7,696 research outputs found

    A Buffer Stocks Model for Stabilizing Price of Staple Food with Considering the Expectation of Non Speculative Wholesaler

    Get PDF
    This paper is a study of price stabilization in the staple food distribution system. All stakeholders experience market risks due to some possibility causes of price volatility. Many models of price stabilization had been developed by employing several approaches such as floor-ceiling prices, buffer funds, export or import taxes, and subsidies. In the previous researches, the models were expanded to increase the purchasing price for producer and decrease the selling price for consumer. Therefore, the policy can influence the losses for non-speculative wholesaler that is reflected by the descending of selling quantity and ascending of the stocks. The objective of this model is not only to keep the expectation of both producer and consumer, but also to protect non-speculative wholesaler from the undesirable result of the stabilization policy. A nonlinear programming model was addressed to determine the instruments of intervention program. Moreover, the result shows that the wholesaler behavior affects the intervention costs. Index Terms Buffer stocks, Price stabilization, Nonlinear programming, Wholesaler behavior

    Robust Ising Gates for Practical Quantum Computation

    Full text link
    I describe the use of techniques based on composite rotations to combat systematic errors in controlled phase gates, which form the basis of two qubit quantum logic gates. Although developed and described within the context of Nuclear Magnetic Resonanace (NMR) quantum computing these sequences should be applicable to any implementation of quantum computation based on Ising couplings. In combination with existing single qubit gates this provides a universal set of robust quantum logic gates.Comment: 3 Pages RevTex4 including 2 figures. Will submit to PR

    Specializing Interpreters using Offline Partial Deduction

    No full text
    We present the latest version of the Logen partial evaluation system for logic programs. In particular we present new binding-types, and show how they can be used to effectively specialise a wide variety of interpreters.We show how to achieve Jones-optimality in a systematic way for several interpreters. Finally, we present and specialise a non-trivial interpreter for a small functional programming language. Experimental results are also presented, highlighting that the Logen system can be a good basis for generating compilers for high-level languages

    Quantum search without entanglement

    Get PDF
    Entanglement of quantum variables is usually thought to be a prerequisite for obtaining quantum speed-ups of information processing tasks such as searching databases. This paper presents methods for quantum search that give a speed-up over classical methods, but that do not require entanglement. These methods rely instead on interference to provide a speed-up. Search without entanglement comes at a cost: although they outperform analogous classical devices, the quantum devices that perform the search are not universal quantum computers and require exponentially greater overhead than a quantum computer that operates using entanglement. Quantum search without entanglement is compared to classical search using waves.Comment: 9 pages, TeX, submitted to Physical Review Letter

    Crossing the Brown Dwarf Desert Using Adaptive Optics: A Very Close L-Dwarf Companion to the Nearby Solar Analog HR 7672

    Get PDF
    We have found a very faint companion to the active solar analog HR 7672 (HD 190406; GJ 779; 15 Sge). Three epochs of high resolution imaging using adaptive optics (AO) at the Gemini-North and Keck II Telescopes demonstrate that HR 7672B is a common proper motion companion, with a separation of 0.79" (14 AU) and a 2.16 um flux ratio of 8.6 mags. Using follow-up K-band spectroscopy from Keck AO+NIRSPEC, we measure a spectral type of L4.5+/-1.5. This is the closest ultracool companion around a main sequence star found to date by direct imaging. We estimate the primary has an age of 1-3 Gyr. Assuming coevality, the companion is most likely substellar, with a mass of 55-78 Mjup based on theoretical models. The primary star shows a long-term radial velocity trend, and we combine the radial velocity data and AO imaging to set a firm (model-independent) lower limit of 48 Mjup. In contrast to the paucity of brown dwarf companions at <~4 AU around FGK dwarfs, HR 7672B implies that brown dwarf companions do exist at separations comparable to those of the giant planets in our own solar system. Its presence is at variance with scenarios where brown dwarfs form as ejected stellar embryos. Moreover, since HR 7672B is likely too massive to have formed in a circumstellar disk as planets are believed to, its discovery suggests that a diversity of physical processes act to populate the outer regions of exoplanetary systems.Comment: Astrophysical Journal, in pres

    The Influence of Superpositional Wave Function Oscillations on Shor's Quantum Algorithm

    Get PDF
    We investigate the influence of superpositional wave function oscillations on the performance of Shor's quantum algorithm for factorization of integers. It is shown that the wave function oscillations can destroy the required quantum interference. This undesirable effect can be routinely eliminated using a resonant pulse implementation of quantum computation, but requires special analysis for non-resonant implementations.Comment: 4 pages, NO figures, revte

    NMR Techniques for Quantum Control and Computation

    Full text link
    Fifty years of developments in nuclear magnetic resonance (NMR) have resulted in an unrivaled degree of control of the dynamics of coupled two-level quantum systems. This coherent control of nuclear spin dynamics has recently been taken to a new level, motivated by the interest in quantum information processing. NMR has been the workhorse for the experimental implementation of quantum protocols, allowing exquisite control of systems up to seven qubits in size. Here, we survey and summarize a broad variety of pulse control and tomographic techniques which have been developed for and used in NMR quantum computation. Many of these will be useful in other quantum systems now being considered for implementation of quantum information processing tasks.Comment: 33 pages, accepted for publication in Rev. Mod. Phys., added subsection on T_{1,\rho} (V.A.6) and on time-optimal pulse sequences (III.A.6), redid some figures, made many small changes, expanded reference

    Kinematics of the ring-like nebula SuWt 2

    Full text link
    We present the first detailed spatio-kinematical analysis and modelling of the Southern planetary nebula SuWt 2. This object presents a problem for current theories of planetary nebula formation and evolution, as it is not known to contain a central post-main sequence star. Deep narrowband [NII]6584 images reveal the presence of faint bipolar lobes emanating fromthe edges of the nebular ring. Longslit observations of the H-alpha and [NII]6584 emission lines were obtained using EMMI on the 3.6-m ESO-NTT. The spectra reveal the nebular morphology as a bright torus encircling the waist of an extended bipolar structure. By deprojection, the inclination of the ring is found to be 68\degr ±\pm 2\degr (c.f. ~90\degr for the double A-type binary believed to lie at the centre of the nebula), and the ring expansion velocity is found to be 28 km/s. Our findings are discussed with relation to possible formation scenarios for SuWt 2. Through comparison of the nebular heliocentric systemic velocity, found here to be -25 ±\pm 5 km/s, and the heliocentric systemic velocity of the double A-type binary, we conclude that neither component of the binary could have been the nebular progenitor. However, we are unable to rule out the presence of a third component to the system, which would have been the nebula progenitor.Comment: 7 pages, 4 figures. Accepted for publication in MNRA

    Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries

    Get PDF
    What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling n-qubit Hamiltonian and local unitaries. It follows that universal quantum computation can be performed using any entangling interaction and local unitary operations.Comment: Added references to NMR refocusing and to earlier work by Leung et al and Jones and Knil
    corecore