623 research outputs found

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Representative volume for elastic, hardening and softening materials

    Get PDF
    The objective of this study is to verify the existence of Representative Volume Elements (RVEs) in different regimes of loading and possibly to quantify the size of a RVE for brittle materials

    Strain injection techniques in dynamic fracture modeling

    Get PDF
    A computationally affordable modeling of dynamic fracture phenomena is performed in this study by using strain injection techniques and Finite Elements with Embedded strong discontinuities (E-FEM). In the present research, classical strain localization and strong discontinuity approaches are considered by injecting discontinuous strain and displacement modes in the finite element formulation without an increase of the total number of degrees of freedom. Following the Continuum Strong Discontinuity Approach (CSDA), stress–strain constitutive laws can be employed in the context of fracture phenomena and, therefore, the methodology remains applicable to a wide number of continuum mechanics models. The position and orientation of the displacement discontinuity is obtained through the solution of a crack propagation problem, i.e. the crack path field, based on the distribution of localized strains. The combination of the above mentioned approaches is envisaged to avoid stress-locking and directional mesh bias phenomena. Dynamic simulations are performed increasing the loading rate up to the appearance of crack branching, and the variation in terms of failure modes is investigated as well as the influence of the strain injection together with the crack path field algorithm. Objectivity of the presented methodology with respect to the spatial and temporal discretization is analyzed in terms of the dissipated energy during the fracture process. The dissipation at the onset of branching is studied for different loading rate conditions and is linked to the experimental maximum velocity observed before branching takes place.Fil: Lloberas Valls, Oriol. Universidad Politecnica de Catalunya; España. Centre Internacional de Metodes Numerics en Enginyeria; EspañaFil: Huespe, Alfredo Edmundo. Centre Internacional de Metodes Numerics en Enginyeria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Oliver, J.. Centre Internacional de Metodes Numerics en Enginyeria; España. Universidad Politecnica de Catalunya; EspañaFil: Dias, I.F.. Laboratório Nacional de Engenharia Civil; Portuga

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Reduced finite element square techniques (RFE2): towards industrial multiscale fe software

    Get PDF
    Reduced order modeling techniques proposed by the authors are assessed for an industrial case study of a 3D reinforced composite laminate. Essentially, the main dominant strain micro-structural modes are obtained through standard reduced order modeling techniques applied over snapshots of a representative training strain space. Additionally, a reduced number of integration points is obtained by exactly integrating the main energy modes resulting from the training energy snapshots. The outcome consists of a number of dominant strain modes integrated over a remarkably reduced number of integration points which provide the support to evaluate the constitutive behavior of the micro-structural phases. Results are discussed in terms of the consistency of the multiscale analysis, tunability of the microscopic material parameters and speed up ratios comparing a high fidelity simulation and the multiscale reduced order model

    Variational approach to relaxed topological optimization: closed form solutions for structural problems in a sequential pseudo-time framework

    Get PDF
    The work explores a specific scenario for structural computational optimization based on the following elements: (a) a relaxed optimization setting considering the ersatz (bi-material) approximation, (b) a treatment based on a non-smoothed characteristic function field as a topological design variable, (c) the consistent derivation of a relaxed topological derivative whose determination is simple, general and efficient, (d) formulation of the overall increasing cost function topological sensitivity as a suitable optimality criterion, and (e) consideration of a pseudo-time framework for the problem solution, ruled by the problem constraint evolution. In this setting, it is shown that the optimization problem can be analytically solved in a variational framework, leading to, nonlinear, closed-form algebraic solutions for the characteristic function, which are then solved, in every time-step, via fixed point methods based on a pseudo-energy cutting algorithm combined with the exact fulfillment of the constraint, at every iteration of the non-linear algorithm, via a bisection method. The issue of the ill-posedness (mesh dependency) of the topological solution, is then easily solved via a Laplacian smoothing of that pseudo-energy. In the aforementioned context, a number of (3D) topological structural optimization benchmarks are solved, and the solutions obtained with the explored closed-form solution method, are analyzed, and compared, with their solution through an alternative level set method. Although the obtained results, in terms of the cost function and topology designs, are very similar in both methods, the associated computational cost is about five times smaller in the closed-form solution method this possibly being one of its advantages. Some comments, about the possible application of the method to other topological optimization problems, as well as envisaged modifications of the explored method to improve its performance close the workPeer ReviewedPostprint (author's final draft

    Inflamació i macròfags

    Get PDF
    Els macròfags tenen un paper clau en la inflamació. Durant l'inici del procés inflamatori aquestes cèl·lules s'activen i mostren una potent funció fagocítica i microbicida que pot tenir efectes destructius en els teixits on actua. L'activació dels macròfags implica la inducció de més de quatre-cents gens, i dóna com a resultat més capacitat per eliminar els bacteris i per regular moltes altres cèl·lules a través de l'alliberament de citocines i quimiocines. L'activació excessiva d'aquestes cèl·lules té efectes perjudicials, com ara el xoc sèptic, que pot conduir a la síndrome de disfunció orgànica múltiple i a la mort. En altres situacions la persistència dels resultats de l'activitat proinflamatòria pot contribuir al desenvolupament de processos d'inflamació crònica, com l'artritis reumatoide, la psoriasi i la malaltia inflamatòria de l'intestí. Per evitar aquests efectes indesitjables els macròfags han desenvolupat diversos mecanismes per regular l'excés d'activació, de manera que es condueix a la desactivació dels macròfags i a la resolució de la inflamació.Macrophages play key roles in inflammation. During the onset of the inflammatory process, these phagocytic cells become activated and have destructive effects. Macrophage activation, which involves the induction of more than 400 genes, results in an increased capacity to eliminate bacteria and to regulate many other cells through the release of cytokines and chemokines. However, excessive activation has damaging effects, such as septic shock, which can lead to multiple organ dysfunction syndrome and death. In other situations, persistence of pro-inflammatory activity results in the development of chronic inflammation, such as rheumatoid arthritis, psoriasis and inflammatory bowel disease. To prevent undesirable effects, several mechanisms have evolved to control excess activation, thereby leading to macrophage deactivation and the resolution of inflammation. In this review we will discuss the molecular mechanisms of proliferation, activation and survival of macrophages

    Objective multiscale analysis of random heterogeneous materials

    Get PDF
    The multiscale framework presented in [1, 2] is assessed in this contribution for a study of random heterogeneous materials. Results are compared to direct numerical simulations (DNS) and the sensitivity to user-defined parameters such as the domain decomposition type and initial coarse scale resolution is reported. The parallel performance of the implementation is studied for different domain decompositions
    corecore