47,079 research outputs found

    What's Neoliberalism Got to Do With It? Towards a Political Economy of Punishment in Greece

    Get PDF
    SAGE copyright policy clearly states that the co-authors 'may not post the final version of the article as published by SAGE or the SAGE–created PDF – ‘version 3’. Thus we cannot achieve the submitted (SAGE.pdf) version

    Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities

    Get PDF
    This is the post-print version of the paper. The official published version can be accessed from the link below - Copyright @ 2012 IEEEThis paper investigates the robust sliding mode control (SMC) problem for a class of uncertain nonlinear stochastic systems with mixed time delays. Both the sectorlike nonlinearities and the norm-bounded uncertainties enter into the system in random ways, and such randomly occurring uncertainties and randomly occurring nonlinearities obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The mixed time delays consist of both the discrete and the distributed delays. The time-varying delays are allowed in state. By employing the idea of delay fractioning and constructing a new Lyapunov–Krasovskii functional, sufficient conditions are established to ensure the stability of the system dynamics in the specified sliding surface by solving a certain semidefinite programming problem. A full-state feedback SMC law is designed to guarantee the reaching condition. A simulation example is given to demonstrate the effectiveness of the proposed SMC scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303 and 60834003, National 973 Project under Grant 2009CB320600, the Fok Ying Tung Education Fund under Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China under Grant 2007B4, the Key Laboratory of Integrated Automation for the Process Industry Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme

    "Alternative" endocytic mechanisms exploited by pathogens: new avenues for therapeutic delivery?

    Get PDF
    Some pathogens utilize unique routes to enter cells that may evade the intracellular barriers encountered by the typical clathrin-mediated endocytic pathway. Retrograde transport and caveolar uptake are among the better characterized pathways, as alternatives to clathrin-mediated endocytosis, that are known to facilitate entry of pathogens and potential delivery agents. Recent characterization of the trafficking mechanisms of prion proteins and certain bacteria may present new paradigms for strategizing improvements in therapeutic spread and retention of therapy. This review will provide an overview of such endocytic pathways, and discuss current and future possibilities in using these routes as a means to improve therapeutic delivery

    Short-term variability in the sedimentary BIT index of Lake Challa, East Africa over the past 2200 years : validating the precipitation proxy

    Get PDF
    Abstract. The branched vs. isoprenoid index of tetraethers (BIT index) in Lake Challa sediments has been applied as a monsoon precipitation proxy on the assumption that the primary source of branched tetraether lipids (brGDGTs) was soil washed in from the lake's catchment. However, water column production has since been identified as the primary source of brGDGTs in Lake Challa, meaning that there is no longer a clear mechanism linking BIT index variation and precipitation. Here we investigate BIT index variation and GDGT concentrations at a decadal resolution over the past 2200 years, in combination with GDGT data from profundal surface sediments and 45 months of sediment-trap deployment. The 2200 year record reveals high-frequency variability in GDGT concentrations, and therefore the BIT index. Also surface sediments collected in January 2010 show a distinct shift in GDGT composition relative to those collected in August 2007. Increased bulk flux of settling particles with high Ti / Al ratios during March–April 2008 reflect an event of high detrital input to Lake Challa, concurrent with intense precipitation at the onset of the principal rain season that year. Although brGDGT distributions in the settling material are initially unaffected, this soil erosion event is succeeded by a large diatom bloom in July–August 2008 and a concurrent increase in GDGT-0 fluxes. Near-zero crenarchaeol fluxes indicate that no thaumarchaeotal bloom developed during the subsequent austral summer season; instead a peak in brGDGT fluxes is observed in December 2008. We suggest that increased nutrient availability, derived from eroded soil washed into the lake, stimulated both diatom productivity and the GDGT-0 producing archaea which help decompose dead diatoms passing through the suboxic zone of the water column. This disadvantaged the Thaumarchaeota that normally prosper during the following austral summer. Instead, a bloom of supposedly heterotrophic brGDGT-producing bacteria occurred. Episodic recurrence of such high soil-erosion events, integrated over multi-decadal and longer timescales and possibly enhanced by other mechanisms generating low BIT index values in dry years, can explain the positive relationship between the sedimentary BIT index and monsoon precipitation at Lake Challa. However, application elsewhere requires ascertaining the local situation of lacustrine brGDGT production and of variables affecting the productivity of Thaumarchaeota. </jats:p

    A slow coronal mass ejection with rising X-ray source

    Get PDF
    An eruptive event, which occurred on 16th April 2002, is discussed. Using images from the Transition Region and Coronal Explorer ( TRACE) at 195 angstrom, we observe a lifting flux rope which gives rise to a slow coronal mass ejection ( CME). There are supporting velocity observations from the Coronal Diagnostic Spectrometer ( CDS) on the Solar and Heliospheric Observatory ( SOHO), which illustrate the helical nature of the structure. Additionally a rising coronal hard X- ray source, which is observed with the Reuven Ramaty High Energy Solar Spectroscopic Imager ( RHESSI), is shown to follow the flux rope with a speed of similar to 60 km s(-1). It is also sampled by the CDS slit, although it has no signature in the Fe XIX band. Following the passage of this source, there is evidence from the CDS for down- flowing ( cooling) material along newly reconnected loops through Doppler velocity observations, combined with magnetic field modeling. Later, a slow CME is observed with the Large Angle and Spectroscopic Coronagraph ( LASCO). We combine a height- time profile of the flux rope at lower altitudes with the slow CME. The rising flux rope speeds up by a factor of 1.7 at the start of the impulsive energy release and goes through further acceleration before reaching 1.5 solar radii. These observations support classical CME scenarios in which the eruption of a filament precedes flaring activity. Cusped flare loops are observed following the erupting flux rope and their altitude increases with time. In addition we find RHESSI sources both below and above the probable location of the reconnection region

    Efficient calculation of integrals in mixed ramp-Gaussian basis sets

    Get PDF
    Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RampItUp.These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or very large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre

    Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings

    Get PDF
    The objective of the present study is to characterize the effect of modified chain stitching on the delamination growth under mixed-mode I/II loading conditions. Delamination toughness under mode I is experimentally determined, for unstitched and stitched laminates, by using untabbed and tabbed double cantilever beam (TDCB) tests. The effect of the reinforcing tabs on mode I toughness is investigated. Stitching improves the energy release rate (ERR) up to 4 times in mode I. Mode II delamination toughness is evaluated in end-notched flexure (ENF) tests. Different geometries of stitched specimens are tested. Crack propagation occurs without any failure of stitching yarns. The final crack length attains the mid-span or it stops before and the specimen breaks in bending. The ERR is initially low and gradually increases with crack length to very high values. The mixedmode delamination behaviour is investigated using a mixed-mode bending (MMB) test. For unstitched specimens, a simple mixed-mode criterion is identified. For stitched specimens, stitching yarns do not break during 25% of mode I ratio tests and the ERR increase is relatively small compared to unstitched values. For 70% and 50% of mode I ratios, failures of yarns are observed during crack propagation and tests are able to capture correctly the effect of the stitching: it clearly improves the ERR for these two mixed modes, as much as threefold
    corecore