40 research outputs found

    The IRIS THz/Infrared beamline at BESSY II

    Get PDF
    At BESSY II a large acceptance angle, multipurpose infrared beamline is available, comprising several end stations suitable for material and life science investigations. The beamline provides highly brilliant infrared radiation over the energy range from about 20,000 down to 30 cm-1 and even lower when BESSY II is run in the so-called low-a mode

    In situ infrared imaging of the local orientation of cellulose fibrils in plant secondary cell walls

    Get PDF
    The mechanical and chemical properties of plant cell walls greatly rely on the supramolecular assembly of cellulose fibrils. To study the local orientation of cellulose in secondary plant cell walls, diffraction limited infrared (IR) micro-spectroscopic mapping experiments were conducted at different orientation of transverse leaf section of the grass Sorghum bicolor with respect to the polarization direction of the IR radiation. Two-dimensional maps, based on polarization-sensitive absorption bands of cellulose were obtained for different polarization angles. They reveal a significant degree of anisotropy of the cellulose macromolecules as well as of other biopolymers in sclerenchyma and xylem regions of the cross section. Quantification of the signals assigned to polarization sensitive vibrational modes allowed to determine the preferential orientation of the sub-micron cellulose fibrils in single cell walls. A sample of crystalline nano-cellulose comprising both a single microcrystal as well as unordered layers of nanocrystals was used for validation of the approach. The results demonstrate that diffraction limited IR micro-spectroscopy can be used to study hierarchically structured materials with complex anisotropic behavior.Peer Reviewe

    Chemical analysis of acoustically levitated drops by Raman spectroscopy

    Get PDF
    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid–base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension

    C-amidation of substituted β 3oligoamides yields novel supramolecular assembly motif

    No full text
    N-acylated substituted β 3 oligoamides are known to form unique supramolecular nanorods based on a 3-point hydrogen bond self-assembly motif. This motif is an intermolecular extension of the hydrogen bonding network that stabilizes the 14-helix secondary structure unique to β 3 oligoamides. Acetylation of the N-terminus of the molecule provides the necessary third hydrogen bond pair of the motif. Here, the possibility of introducing the third hydrogen bond pair via amidation of the C terminus is investigated. While similar in purpose, this modification introduces a chemically distinct new self-assembly motif, also removing the bulky carboxyl group that does not fold into the 14 helix positioning instead as a side chain. Three substituted β 3 oligoamide variants with the base sequence LIA (where the letters denote β 3 residues with side chains analogous to α amino acids) were compared: N-acylated Ac-β 3[LIA] as a reference, C-amidated β 3[LIA]-CONH2, and β 3[LIA] with free unmodified N and C termini as a negative control. The three variants were dissolved in water to promote self-assembly. The self-assembly was characterised using mid- and far-infrared spectroscopy, small angle x-ray scattering (SAXS) and atomic force microscopy (AFM). IR measurements confirmed that all three samples were in a similar conformation, consistent with pseudo 14-helical secondary structures. Far-infrared spectroscopy measurements of β 3[LIA]-CONH2 showed distinct peaks consistent with highly organised skeletal modes, i.e. regular supramolecular assembly, that was largely absent from the other two oligoamides. Modelling of SAXS data is consistent with elliptical cylinder structures resulting from nanorod bundling for both β 3[LIA]-CONH2 and Ac-β 3[LIA], but not in the unmodified sample. Consistently, AFM imaging showed large nanorod bundling structures in β 3[LIA]-CONH2, varied bundling structures in Ac-β 3[LIA], and only aggregation in β 3[LIA]. Amidation showed much more organised and robust assembly compared to acetylation, providing a new, easy to synthesize self-assembly motif for helical nanorod assembly that is similar but distinct to N-acylatio

    Exploring the interplay between microplastics and biofilms in freshwater

    No full text
    Plastic inevitably accumulates in the environment becoming a persistent. In the present work, we aim at documenting MPs occurrence in three collection spots of the biggest European artificial lake over one year period using infrared microscopy. Scanning electron microscopy was used to evaluate MPs colonization by biofilms. PE was the most abundant polymer and biofilms were identified in all plastics.CALIPSOplus: 1004; 202-10133 ST/UR; 212-10726 ST/URN/

    Coordination crosslinking of helical substituted oligoamide nanorods with Cu(II)

    No full text
    Substituted oligoamides are short sequences of unnatural amino acids. Oligoamides made entirely of β3 amino acids yield helical monomers that, if N-acylated, assemble into nanorod structures via a supramolecular assembly motif. In this work, coordination crosslinking was used to create complex nanomaterials from oligoamides WKLWEL (KE) and WELWEL (EE) (the letters denote the analogous α-amino acids). Upon Cu(II) addition, atomic force microscopy and small angle neutron scattering revealed morphologic changes specific to KE but absent in EE. Vibration spectroscopy measurements revealed that Cu(II) can coordinate to the amine moieties of the side chains, without direct effect on the backbone amides. While coordination in excess solvent lead to regular nanostructures, fast drying of the sample yielded oligoamide templated crystallization of CuCl2. The metal coordination crosslinking of supramolecular assemblies as reported here is the first realization of a metallosupramolecular framework structure

    What is required to stabilize Al3+? a gas-phase perspective

    No full text
    With a combination of experiment and theory (ab initio and DFT), we demonstrate that the Al3+ cation can be stabilized in the gas phase using ligands, which have the ability to act as powerful a electron donors and electron acceptors. The latter property, which implies that electron density from the aluminum cation moves into ligand antibonding orbitals, has not previously been considered significant when accounting for the behavior of Al3+. Of the three ligands identified as falling into the above category, acetonitrile appears to form the most stable complexes in the gas phase, which is in accord with the long established fact that solid-state complexes with Al3+ are readily isolated. From the results, it is suggested that chain or ring compounds containing the -C equivalent to N group might act as successful sequestering agents for Al3+ from aqueous solutions

    Infrared spectroscopy across scales in length and time at BESSY II

    No full text
    The infrared beamline at BESSY II storage ring was upgraded recently to extend capabilities of infrared microscopy. The end-stations available at the beamline are now facilitating improved characterization of molecules and materials at different length scales and time resolution. We report the current outline of the beamline and give an overview of the end-stations available. In particular, presented here are first results obtained with using a new microscope for nano-spectroscopy that was implemented. We demonstrate the capabilities of the scattering-type near-field optical microscope (s-SNOM) by investigation of cellulose microfibrils, representing nanoscopic objects of a hierarchical structure. It is shown that the s-SNOM coupled to the beamline allows to perform imaging with spatial resolution less than 30 nm and to collect infrared spectra from effective volume of less than 30x30x12 nm3nm^3. Potential steps for a further optimization of the beamline performance are discussed

    Ligand field photofragmentation spectroscopy of [Ag(L)N]2+ complexes in the gas phase: experiment and theory

    No full text
    Experiments have been undertaken to record photofragmentation spectra from a series of [Ag (L)N] 2+ complexes in the gas phase. Spectra have been obtained for silver(II) complexed with the ligands (L): acetone, 2-pentanone, methyl-vinyl ketone, pyridine, and 4-methyl pyridine (4-picoline) with N in the range of 4-7. A second series of experiments using 1,1,1,3-fluoroacetone, acetonitrile, and C O2 as ligands failed to show any evidence of photofragmentation. Interpretation of the experimental data has come from time-dependent density functional theory (TDDFT), which very successfully accounts for trends in the spectra in terms of subtle differences in the properties of the ligands. Taking a sample of three ligands, acetone, pyridine, and acetonitrile, the calculations show all the spectral transitions to involve ligand-to-metal charge transfer, and that wavelength differences (or lack of spectra) arise from small changes in the energies of the molecular orbitals concerned. The calculations account for an absence in the spectra of any effects due to Jahn-Teller distortion, and they also reveal structural differences between complexes where the coordinating atom is either oxygen or nitrogen that have implications for the stability of silver(II) compounds. Where possible, comparisons have also been made with the physical properties of condensed phase silver(II) complexes
    corecore