95 research outputs found

    Piperacillin-Tazobactam (TZP) Resistance in Escherichia coli Due to Hyperproduction of TEM-1 β-Lactamase Mediated by the Promoter Pa/Pb

    Get PDF
    TEM-1, mediated by plasmid and transposon, is the most commonly encountered β-lactamase in Gram-negative bacteria. Four different promoters upstream of blaTEM-related genes have been identified: the weak P3 promoter, and the strong promoters Pa/Pb, P4, and P5. In this study, we investigated the genetic basis of a clinical strain of Escherichia coli (RJ904), which was found to be resistant to BLBLIs (β-lactam/β-lactamase inhibitors), including amoxicillin-clavulanate, ticarcillin-clavulanate (TCC), and piperacillin-tazobactam (TZP) but sensitive to third-generation cephalosporins. The conjugation test and S1-nuclease pulsed-field gel electrophoresis (S1-PFGE) demonstrated that transfer of this resistance was mediated by a ca. 100 kb plasmid. The transformant with TZP resistance was screened out with the shortgun cloning. Sequence analysis revealed that the recombinant plasmid contained a blaTEM-1b gene with the strong promoter Pa/Pb. Different plasmids were cloned based on the clone vector pACYC184 with the insertion of the blaTEM-1b gene with promoters Pa/Pb or P3. Susceptibility to TZP was determined by the E-test, agar dilution, and broth microdilution. The level of blaTEM-1b-specific transcription was determined by quantitative real-time PCR. Substitution of Pa/Pb for P3 resulted in a 128-fold decline of the MIC value of TZP, from >1024 mg/L to 8 mg/L, and a significantly lower blaTEM-1b expression level. Hyperproduction of TEM-1 β-lactamase mediated by the promoter Pa/Pb was responsible for high resistance to TZP in E. coli. Our data show possible risks of resistance development in association with the clinical use of TZP. The blaTEM promoter modifications should be considered for whole genome whole-genome sequencing-inferred bacterial antimicrobial susceptibility testing

    RICD: A rice indica cDNA database resource for rice functional genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Oryza sativa </it>L. <it>indica </it>subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two <it>indica </it>varieties Guangluai 4 and Minghui 63. A database of the rice <it>indica </it>cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the <it>indica </it>cDNA clones.</p> <p>Results</p> <p>Rice <it>Indica </it>cDNA Database (RICD) is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB) and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA.</p> <p>Conclusion</p> <p>The online rice <it>indica </it>cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of <it>indica </it>subspecies and for comparative genomics. The RICD database is available through our website <url>http://www.ncgr.ac.cn/ricd</url>.</p

    Novel digital features feature discriminate between drought resistant and drought sensitive rice under controlled and field conditions

    Get PDF
    Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio (TCR)]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals). We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional genomics in future

    Novel digital features feature discriminate between drought resistant and drought sensitive rice under controlled and field conditions

    Get PDF
    Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio (TCR)]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals). We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional genomics in future

    Positive Self-Disclosure on Social Network Sites and Adolescents’ Friendship Quality: The Mediating Role of Positive Feedback and the Moderating Role of Social Anxiety

    No full text
    In the current information age, SNSs (Social Network Sites) have been popular among young adolescents, and have also become a main manner to maintain social relationships. Against this background, based on relevant evidence, the present study aimed to examine the association between positive self-disclosure on SNSs and adolescents’ friendship quality, as well as the underlying mechanism—the potential mediating role of perceived positive feedback and the moderating role of social anxiety. A sample of 1713 adolescents aged 11 to 19 was recruited to participate in this study, to complete a set of scales. Results indicated that positive self-disclosure on SNSs was positively associated with adolescents’ friendship quality, and positive feedback significantly mediated the association between self-disclosure positivity and friendship quality. This mediating effect, moderated by social anxiety, could significantly moderate the mediating effect of positive feedback; specifically, compared with higher social anxiety adolescents, the association between positive self-disclosure and positive feedback was stronger among individuals with lower social anxiety. These findings may expand previous studies, with several theoretical and practical implications

    A Preliminary Study of Heavy Metal Contamination in Yangtze River Intertidal Zone Due to Urbanization

    No full text
    Three short sediment cores (\u3c20 cm) were collected in the high, middle and low tidal flats in the Yangtze River Estuary near the Southern (Nanqu) Sewage Outlet, one of the three largest sewage outlets in Shanghai, China. All samples were analyzed for Al, Cu, Pb, Zn, 210Pb and 7Be. The 210Pb xs profile shows a non-steady-state sedimentation pattern in the study area and 7Be is only found in the upper 1 cm layer of sediment in high and middle tidal flats. In this study, we found that Cu, Pb and Zn contaminants are present in the upper 20 cm of the tidal flat sediment and, after normalizing with Al, the contamination is more striking in the upper ∼5 cm sediment. Relationships between the metal (Cu, Pb and Zn) enrichment factor and 210Pb xs activity suggest that contamination increases with time. Factor analyses shows that differences in sediment grain size have insignificant effects on Cu and Pb concentrations, but have some influence on Zn concentration in the study area. This preliminary study shows that urbanization and recent coastal wetland reclamation have had an environmental impact on this area

    Estimating Escalator vs Stairs Choice Behavior in the Presence of Entry Railing: A Field Study

    No full text
    Entry railings at escalator/stairs system are intervention measures for passenger flow and play a crucial role in local infrastructure optimization in mass transit stations. This paper presents an analysis of the choice between escalators and stairs with mixed logit models, by considering for the first time the length of the entry railing as one of the crucial parameters. Based on a pilot questionnaire survey, a large-scale field study was conducted in Changsha, China and a sample of 11010 passengers was drawn. The datasets of the whole sample and the grouped samples were applied for model calibrations, respectively. The results indicate that the sensitivity to the railing length show significant heterogeneity in preferences, as well as middle age, luggage carrying and density in front of the escalator (ESDEN). All models are validated to have good prediction accuracy. The mixed model outperforms the binary model in predicting the stairs usage, but slightly overestimates the escalator usage. The analysis reinforces earlier findings showing that lengthening the railing (2.5 similar to 3.9 m) reduces the sensitivity of individual diversity to dynamic ESDEN, thus further enhancing the predictive ability by 4.35%. Our results provide unique insights for planners and policymakers on designing and managing transportation systems
    corecore