146 research outputs found

    Assembly Bias of Dwarf-sized Dark Matter Haloes

    Full text link
    Previous studies indicate that assembly bias effects are stronger for lower mass dark matter haloes. Here we make use of high resolution re-simulations of rich clusters and their surroundings from the Phoenix Project and a large volume cosmological simulation, the Millennium-II run, to quantify assembly bias effects on dwarf-sized dark matter haloes. We find that, in the regions around massive clusters, dwarf-sized haloes ([10^9,10^{11}]\ms) form earlier (Δz2\Delta z \sim 2 in redshift) and possess larger VmaxV_{\rm max} (20\sim20%) than the field galaxies. We find that this environmental dependence is largely caused by tidal interactions between the ejected haloes and their former hosts, while other large scale effects are less important. Finally we assess the effects of assembly bias on dwarf galaxy formation with a sophisticated semi-analytical galaxy formation model. We find that the dwarf galaxies near massive clusters tend to be redder (Δ(ur)=0.5\Delta(u-r) = 0.5) and have three times as much stellar mass compared to the field galaxies with the same halo mass. These features should be seen with observational data.Comment: 8 pages, 8 figures, accepted by MNRA

    The Evolution of Sizes and Specific Angular Momenta in Hierarchical Models of Galaxy Formation and Evolution

    Get PDF
    We extend our previous work focused at z0z\sim0, studying the redshift evolution of galaxy dynamical properties using the state-of-the-art semi-analytic model GAEA: we show that the predicted size-mass relation for disky/star forming and quiescent galaxies is in good agreement with observational estimates, up to z2z\sim2. Bulge dominated galaxies have sizes that are offset low with respect to observational estimates, mainly due to our implementation of disk instability at high redshift. At large masses, both quiescent and bulge dominated galaxies have sizes smaller than observed. We interpret this as a consequence of our most massive galaxies having larger gas masses than observed, and therefore being more affected by dissipation. We argue that a proper treatment of quasar driven winds is needed to alleviate this problem. Our model compact galaxies have number densities in agreement with observational estimates and they form most of their stars in small and low angular momentum high-zz halos. GAEA predicts that a significant fraction of compact galaxies forming at high-zz is bound to merge with larger structures at lower redshifts: therefore they are not the progenitors of normal-size passive galaxies at z=0z=0. Our model also predicts a stellar-halo size relation that is in good agreement with observational estimates. The ratio between stellar size and halo size is proportional to the halo spin and does not depend on stellar mass but for the most massive galaxies, where AGN feedback leads to a significant decrease of the retention factor (from about 80 per cent to 20 per cent).Comment: Accepted for publication in MNRAS, 17 pages, 11 figure

    Structural and Dynamical Properties of Galaxies in a Hierarchical Universe: Sizes and Specific Angular Momenta

    Get PDF
    We use a state-of-the-art semi-analytic model to study the size and the specific angular momentum of galaxies. Our model includes a specific treatment for the angular momentum exchange between different galactic components. Disk scale radii are estimated from the angular momentum of the gaseous/stellar disk, while bulge sizes are estimated assuming energy conservation. The predicted size--mass and angular momentum--mass relations are in fair agreement with observational measurements in the local Universe, provided a treatment for gas dissipation during major mergers is included. Our treatment for disk instability leads to unrealistically small radii of bulges formed through this channel, and predicts an offset between the size--mass relations of central and satellite early-type galaxies, that is not observed. The model reproduces the observed dependence of the size--mass relation on morphology, and predicts a strong correlation between specific angular momentum and cold gas content. This correlation is a natural consequence of galaxy evolution: gas-rich galaxies reside in smaller halos, and form stars gradually until present day, while gas-poor ones reside in massive halos, that formed most of their stars at early epochs, when the angular momentum of their parent halos is low. The dynamical and structural properties of galaxies can be strongly affected by a different treatment for stellar feedback, as this would modify their star formation history. A higher angular momentum for gas accreted through rapid mode does not affect significantly the properties of massive galaxies today, but has a more important effect on low-mass galaxies at higher redshift.Comment: 26 pages, 14 figures, 4 appendices. Accepted for publication in MNRA

    BSG alignment of SDSS galaxy groups

    Full text link
    We study the alignment signal between the distribution of brightest satellite galaxies (BSGs) and the major axis of their host groups using SDSS group catalog constructed by Yang et al. (2007). After correcting for the effect of group ellipticity, a statistically significant (~ 5\sigma) major-axis alignment is detected and the alignment angle is found to be 43.0 \pm 0.4 degrees. More massive and richer groups show stronger BSG alignment. The BSG alignment around blue BCGs is slightly stronger than that around red BCGs. And red BSGs have much stronger major-axis alignment than blue BSGs. Unlike BSGs, other satellites do not show very significant alignment with group major axis. We further explore the BSG alignment in semi-analytic model (SAM) constructed by Guo et al. (2011). We found general good agreement with observations: BSGs in SAM show strong major-axis alignment which depends on group mass and richness in the same way as observations; and none of other satellites exhibit prominent alignment. However, discrepancy also exists in that the SAM shows opposite BSG color dependence, which is most probably induced by the missing of large scale environment ingredient in SAM. The combination of two popular scenarios can explain the detected BSG alignment. The first one: satellites merged into the group preferentially along the surrounding filaments, which is strongly aligned with the major axis of the group. The second one: BSGs enter their host group more recently than other satellites, then will preserve more information about the assembling history and so the major-axis alignment. In SAM, we found positive evidence for the second scenario by the fact that BSGs merged into groups statistically more recently than other satellites. On the other hand, although is opposite in SAM, the BSG color dependence in observation might indicate the first scenario as well.Comment: 8 pages, 11 figures, ApJ accepte

    On the influence of environment on star forming galaxies

    Get PDF
    We use our state-of-the-art semi analytic model for GAlaxy Evolution and Assembly (GAEA), and observational measurements of nearby galaxies to study the influence of the environment on the gas content and gaseous/stellar disc sizes of star-forming galaxies. We analyse the origin of differences between physical properties of satellites and those of their central counterparts, identified by matching the Vmax of their host haloes at the accretion time of the satellites. Our model reproduces nicely the differences between centrals and satellites measured for the HI mass, size of the star-forming region, and stellar radii. In contrast, our model predicts larger differences with respect to data for the molecular gas mass and star formation rate. By analysing the progenitors of central and satellite model galaxies, we find that differences in the gas content arise after accretion, and can be entirely ascribed to the instantaneous stripping of the hot gas reservoir. The suppression of cold gas replenishment via cooling and star formation leads to a reduction of the cold gas and of its density. Therefore, more molecular gas is lost than lower density HI gas, and model satellites have less molecular gas and lower star formation rates than observed satellites. We argue that these disagreements could be largely resolved with the inclusion of a proper treatment for ram-pressure stripping of cold gas and a more gradual stripping of the hot gas reservoir. A more sophisticated treatment of angular momentum exchanges, accounting for the multi-phase nature of the gaseous disc is also required.Comment: 15 pages, 9 figures, accepted for publication in MNRA

    Damped Lyman-α\alpha absorbers and atomic hydrogen in galaxies: the view of the GAEA model

    Get PDF
    Using the GAEA semi-analytic model, we analyse the connection between Damped Lyman-α\alpha systems (DLAs) and HI in galaxies. Our state-of-the-art semi-analytic model is tuned to reproduce the local galaxy HI mass function, and that also reproduces other important galaxy properties, including the galaxy mass - gas metallicity relation. To produce catalogs of simulated DLAs we throw 10510^5 random lines of sight in a composite simulated volume: dark matter haloes with log(M200M)11.5(\frac{M_{200}}{ M_{\odot}}) \geq 11.5 are extracted from the Millennium Simulation, while for 9.2log(M200M)<11.59.2 \leq \log(\frac{M_{200}}{ M_{\odot}})<11.5 we use the Millennium II, and for 8log(M200M)<9.28 \leq \log(\frac{M_{200}}{M_{\odot}}) < 9.2 a halo occupation distribution model. At 2<z<32 < z < 3, where observational data are more accurate, our fiducial model predicts the correct shape of the column density distribution function, but its normalization falls short of the observations, with the discrepancy increasing at higher redshift. The agreement with observations is significantly improved increasing both the HI masses and the disk radii of model galaxies by a factor 2, as implemented 'a posteriori' in our 2M2R2M-2R model. In the redshift range of interest, haloes with M2001011MM_{200} \geq {10}^{11} M_{\odot} give the major contribution to ΩDLA\Omega_{\rm DLA}, and the typical DLA host halo mass is 1011M\sim {10}^{11} M _{\odot}. The simulated DLA metallicity distribution is in relatively good agreement with observations, but our model predicts an excess of DLAs at low metallicities. Our results suggest possible improvements for the adopted modelling of the filtering mass and metal ejection in low-mass haloes.Comment: 21 pages, 16 figures. Accepted for publication in MNRA

    H2-based star formation laws in hierarchical models of galaxy formation

    Get PDF
    5We update our recently published model for GAlaxy Evolution and Assembly (GAEA), to include a self-consistent treatment of the partition of cold gas in atomic and molecular hydrogen. Our model provides significant improvements with respect to previous ones used for similar studies. In particular, GAEA (i) includes a sophisticated chemical enrichment scheme accounting for non-instantaneous recycling of gas, metals and energy; (ii) reproduces the measured evolution of the galaxy stellar mass function; (iii) reasonably reproduces the observed correlation between galaxy stellar mass and gas metallicity at different redshifts. These are important prerequisites for models considering a metallicity-dependent efficiency of molecular gas formation. We also update our model for disc sizes and show that model predictions are in nice agreement with observational estimates for the gas, stellar and star-forming discs at different cosmic epochs. We analyse the influence of different star formation laws including empirical relations based on the hydrostatic pressure of the disc, analytic models and prescriptions derived from detailed hydrodynamical simulations. We find that modifying the star formation law does not affect significantly the global properties of model galaxies, neither their distributions. The only quantity showing significant deviations in different models is the cosmic molecular-to-atomic hydrogen ratio, particularly at high redshift. Unfortunately, however, this quantity also depends strongly on the modelling adopted for additional physical processes. Useful constraints on the physical processes regulating star formation can be obtained focusing on low-mass galaxies and/or at higher redshift. In this case, self-regulation has not yet washed out differences imprinted at early time.openopenXie, Lizhi; De Lucia, Gabriella; Hirschmann, Michaela; Fontanot, Fabio; Zoldan, AnnaXie, Lizhi; De Lucia, Gabriella; Hirschmann, Michaela; Fontanot, Fabio; Zoldan, Ann

    The atomic hydrogen content of the post-reionization Universe

    Get PDF
    We present a comprehensive analysis of atomic hydrogen (H\u2009i) properties using a semi-analytical model of galaxy formation and N-body simulations covering a large cosmological volume at high resolution. We examine the H\u2009i mass function and the H\u2009i density, characterizing both their redshift evolution and their dependence on hosting halo mass. We analyse the H\u2009i content of dark matter haloes in the local Universe and up to redshift z = 5, discussing the contribution of different galaxy properties. We find that different assembly history plays a crucial role in the scatter of this relation. We propose new fitting functions useful for constructing mock H\u2009i maps with halo occupation distribution techniques. We investigate the H\u2009i clustering properties relevant for future 21 cm intensity mapping (IM) experiments, including the H\u2009i bias and the shot-noise level. The H\u2009i bias increases with redshift and it is roughly flat on the largest scales probed. The scale dependence is found at progressively larger scales with increasing redshift, apart from a dip feature at z = 0. The shot-noise values are consistent with the ones inferred by independent studies, confirming that shot noise will not be a limiting factor for IM experiments. We detail the contribution from various galaxy properties on the H\u2009i power spectrum and their relation to the halo bias. We find that H\u2009i poor satellite galaxies play an important role at the scales of the one-halo term. Finally, we present the 21 cm signal in redshift space, a fundamental prediction to be tested against data from future radio telescopes such as Square Kilometre Array
    corecore