57 research outputs found

    A Service Composition Approach Based on Pre-joined Service Network in Graph Database

    Get PDF
    We solve the service composition problem with plugin semantic matching in a graph database. We present a Prejoined Service Network (PJSN) approach which firstly constructs and stores a service composition network with all services and compositions in a graph database. Then, this approach fetches a satisfying solution by converting the composition request into Cypher and querying the graph database. We evaluate the performance of the proposed PJSN approach by conducting experiments and comparing with that of the Pre-joined Semantic Indexing Graph (PJSIG) method. The experiment results show that compared with the PJSIG method, the proposed approach can always find a solution and lead to higher user’s satisfaction

    Substance P is overexpressed in cervical squamous cell carcinoma and promoted proliferation and invasion of cervical cancer cells <em>in vitro</em>

    Get PDF
    This study aimed to investigate the expression and function of substance P in cervical squamous cell carcinoma. Cancer tissues and adjacent tissues of 20 patients with cervical squamous cell carcinoma in our hospital were collected. The expression of substance P was detected by immunohistochemistry and Western blot analysis. Cervical squamous cell carcinoma line SiHa was treated with different concentrations of substance P. The proliferation of SiHa cells was detected by EdU assay, and the invasion ability of SiHa cells was detected by transwell assay. The phosphorylation of ERK1/2 and the expression of MMP9 were detected by Western blot analysis. The results showed that substance P was expressed in the cytoplasm and some cell membranes of cervical squamous cell carcinoma cells. The expression of substance P in cervical cancer tissues was significantly higher than that in the adjacent tissues. Compared with the control group, substance P significantly promoted the proliferation and invasion of SiHa cells in a concentration dependent manner and activated the phosphorylation of ERK1/2 and upregulated the expression of MMP9 in SiHa cells. In conclusion, substance P is highly expressed in cervical squamous cell carcinoma and can promote cervical cancer cell proliferation and invasion. The mechanism is related to the activation of ERK1/2 pathway to upregulate MMP9

    Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice.

    Get PDF
    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, 'browning' of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated.This work was supported by grants from the National Basic Research Program (2013CB530602 and 2011CB910801 to P.L.), from the National Natural Science Foundation of China (31430040, 31321003 and 31030038), from the China Postdoctoral Science Foundation (2012M520249 and 2013T60103 to L.Z.) and from the Wellcome Trust (091551 to D.S.). This work was also supported by the Bio and Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2013M3A9D5072563 to C.C.) and Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Korea (A102060 to C.C.).This is the final published version. It first appeared at http://www.nature.com/ncomms/2015/150107/ncomms6949/full/ncomms6949.html?WT.ec_id=NCOMMS-20150114

    Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks

    No full text
    Immature astrocytes and astrocytoma cells contain synemin and three other intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), vimentin and nestin. Here, we show that, after neurotrauma, reactive astrocytes produce synemin and thus propose synemin as a new marker of reactive astrocytes. Comparison of synemin mRNA and protein levels in brain tissues and astrocyte cultures from wild-type, Vim-/- and Gfap-/-Vim-/- mice showed that in the absence of vimentin, synemin protein was undetectable although synemin mRNA was present at wild-type levels. By contrast, in Gfap-/- astrocytes, synemin protein and mRNA levels, as well as synemin incorporation into vimentin IFs, were unaltered. Biochemical assays with purified proteins suggested that synemin interacts with GFAP IFs like an IF-associated protein rather than like a polymerization partner, whereas the opposite was true for synemin interaction with vimentin. In transfection experiments, synemin did not incorporate into normal, filamentous GFAP networks, but integrated into vimentin and GFAP heteropolymeric networks. Thus, alongside GFAP, vimentin and nestin, reactive astrocytes contain synemin, whose accumulation is suppressed post-transcriptionally in the absence of a polymerization partner. In astrocytes, this partner is vimentin and not GFAP, which implies a functional difference between these two type III IF proteins

    High-Sensitivity Sensing in All-Dielectric Metasurface Driven by Quasi-Bound States in the Continuum

    No full text
    Quasi-bound states in the continuum (quasi-BIC) in all-dielectric metasurfaces provide a crucial platform for sensing due to its ability to enhance strong matter interactions between light-waves and analytes. In this study, a novel high-sensitivity all-dielectric sensor composed of a periodic array of silicon (Si) plates with square nanoholes in the continuous near-infrared band is theoretically proposed. By adjusting the position of the square nanohole, the symmetry-protected BIC and Friedrich&ndash;Wintgen BIC (FW&ndash;BIC) can be excited. The torodial dipole (TD) and electric quadruple (EQ) are demonstrated to play a dominating role in the resonant modes by near-field analysis and multipole decomposition. The results show that the sensitivity, the Q-factor, and the corresponding figure of merit (FOM) can simultaneously reach 399 nm/RIU (RIU is refractive index unit), 4959, and 1281, respectively. Compared with other complex nanostructures, the proposed metasurface is more feasible and practical, which may open up an avenue for the development of ultrasensitive sensors

    High-Sensitivity Sensing in All-Dielectric Metasurface Driven by Quasi-Bound States in the Continuum

    No full text
    Quasi-bound states in the continuum (quasi-BIC) in all-dielectric metasurfaces provide a crucial platform for sensing due to its ability to enhance strong matter interactions between light-waves and analytes. In this study, a novel high-sensitivity all-dielectric sensor composed of a periodic array of silicon (Si) plates with square nanoholes in the continuous near-infrared band is theoretically proposed. By adjusting the position of the square nanohole, the symmetry-protected BIC and Friedrich–Wintgen BIC (FW–BIC) can be excited. The torodial dipole (TD) and electric quadruple (EQ) are demonstrated to play a dominating role in the resonant modes by near-field analysis and multipole decomposition. The results show that the sensitivity, the Q-factor, and the corresponding figure of merit (FOM) can simultaneously reach 399 nm/RIU (RIU is refractive index unit), 4959, and 1281, respectively. Compared with other complex nanostructures, the proposed metasurface is more feasible and practical, which may open up an avenue for the development of ultrasensitive sensors

    Failure mechanics and infrared radiation characteristics of soft coal at various moisture contents

    No full text
    Soft coal is characterized by low strength and weak bonds, which play a key role in the occurrence and development of dynamic disasters. A more thorough understanding of the failure mechanics and infrared radiation characteristics of soft coal at various moisture contents is needed. In this study, infrared radiation experiments were conducted for soft coal at various moisture contents. The results indicate that moisture content affects compressive strength and elastic modulus of soft coal with compressive strength and elastic modulus being highest at moderate. Moisture has a substantial influence on the infrared radiation of compressed coal samples. Soft coals with high moisture contents show a smaller fluctuation of the average infrared radiation temperature curve and a stronger direct relationship of temperature and stress in the linear elastic stage. The coal samples with various moisture contents show a warming trend during loading. The increased amplitude of infrared radiation temperature per unit stress shows a linear relationship with moisture content. A large number of high temperature red spots appear along the diagonal line of coal samples with 0% moisture content before fracture, while changes in the infrared thermal image of the coal sample with 4% moisture content were negligible during loading

    Lignocelluloses-Based Furan-Acetone Adducts as Wood Adhesives for Plywood Production

    No full text
    Plywood is made of wood veneers that are bonded with adhesives such as urea-formaldehyde, phenol-formaldehyde and melamine-formaldehyde resins. The plywood made from formaldehyde-based adhesives not only releases formaldehyde but also relies on fossil resources. In this article, we synthesized furan-acetone adducts from lignocellulosic biomass in one pot. The furan-acetone adducts could be directly used as adhesives with the addition of phosphoric acid as a curing catalyst. Particularly, with the addition of 5 wt% diphenylmethane diisocyanate (MDI) as a crosslinking agent, both the wet and dry bonding strength of the plywood prepared from the adhesives could meet the minimum requirement of 0.7 MPa (Chinese National Standard GB/T 9846-2015). The possible adhesion mechanism is that the penetration of furan-acetone adhesives into vessels and cell lumens followed by crosslinking during hot-pressing forms mechanical interlocking at the interface of wood veneers, which provides the main bonding strength of plywood. The findings presented here could provide a new way for the efficient preparation of aldehyde-free green wood adhesives and the value-added utilization of woody biomass

    Effect of a Percutaneous Coronary Intervention Procedure on Heart Rate Variability and Pulse Transit Time Variability: A Comparison Study Based on Fuzzy Measure Entropy

    No full text
    Percutaneous coronary intervention (PCI) is a common treatment method for patients with coronary artery disease (CAD), but its effect on synchronously measured heart rate variability (HRV) and pulse transit time variability (PTTV) have not been well established. This study aimed to verify whether PCI for CAD patients affects both HRV and PTTV parameters. Sixteen CAD patients were enrolled. Two five-minute ECG and finger photoplethysmography (PPG) signals were recorded, one within 24 h before PCI and another within 24 h after PCI. The changes of RR and pulse transit time (PTT) intervals due to the PCI procedure were first compared. Then, HRV and PTTV were evaluated by a standard short-term time-domain variability index of standard deviation of time series (SDTS) and our previously developed entropy-based index of fuzzy measure entropy (FuzzyMEn). To test the effect of different time series length on HRV and PTTV results, we segmented the RR and PTT time series using four time windows of 200, 100, 50 and 25 beats respectively. The PCI-induced changes in HRV and PTTV, as well as in RR and PTT intervals, are different. PCI procedure significantly decreased RR intervals (before PCI 973 ± 85 vs. after PCI 907 ± 100 ms, p &lt; 0.05) while significantly increasing PTT intervals (207 ± 18 vs. 214 ± 19 ms, p &lt; 0.01). For HRV, SDTS-only output significant lower values after PCI when time windows are 100 and 25 beats while presenting no significant decreases for other two time windows. By contrast, FuzzyMEn gave significant lower values after PCI for all four time windows (all p &lt; 0.05). For PTTV, SDTS hardly changed after PCI at any time window (all p &gt; 0.90) whereas FuzzyMEn still reported significant lower values (p &lt; 0.05 for 25 beats time window and p &lt; 0.01 for other three time windows). For both HRV and PTTV, with the increase of time window values, SDTS decreased while FuzzyMEn increased. This pilot study demonstrated that the RR interval decreased whereas the PTT interval increased after the PCI procedure and that there were significant reductions in both HRV and PTTV immediately after PCI using the FuzzyMEn method, indicating the changes in underlying mechanisms in cardiovascular system

    Designing superhard metals: The case of low borides

    No full text
    The search for new superhard materials has usually focused on strong covalent solids. It is, however, a huge challenge to design superhard metals because of the low resistance of metallic bonds against the formation and movement of dislocations. Here, we report a microscopic mechanism of enhancing hardness by identifying highly stable thermodynamic phases and strengthening weak slip planes. Using the well-known transition-metal borides as prototypes, we demonstrate that several low borides possess unexpectedly high hardness whereas high borides exhibit an anomalous hardness reduction. Such an unusual phenomenon originates from the peculiar bonding mechanisms in these compounds. Furthermore, the low borides have close compositions, similar structures, and degenerate formation energies. This enables facile synthesis of a multiphase material that includes a large number of interfaces among different borides, and these interfaces form nanoscale interlocks that strongly suppress the glide dislocations within the metal bilayers, thereby drastically enhancing extrinsic hardness and achieving true superhard metals. Therefore, this study not only elucidates the unique mechanism responsible for the anomalous hardening in this class of borides but also offers a valid alchemy to design novel superhard metals with multiple functionalities
    • …
    corecore