35 research outputs found

    Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    Get PDF
    Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs’ ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process

    Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity

    Get PDF
    Centralnervoussystem(CNS)sensesenergyhomeostasisbyintegratingbothperipheralandautonomicsignalsandrespondingto thembyneurotransmittersandneuropeptidesrelease.Althoughitispreviouslyconsideredanimmunologicallyprivilegedorgan, we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive energybalanceduringobesitypromotesaninflammatorystateintheCNS.Saturatedfattyacidsfromthediethavebeenpointed out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity communicatestoperipheralimmuneresponseremainstobeclarified.Recentlytherehasbeenagreatinterestintheneuropeptides, POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce inflammatory responses in the brain, respectively. These may be potential candidates to treat different pathologies associated with autoimmunity and inflammation. In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proinflammatory responseinmicroglia,BandTlymphocytes,anditsmodulationbyneuropeptides

    Microglia activation due to obesity programs metabolic failure leading to type two diabetes

    Get PDF
    Obesity is an energy metabolism disorder that increases susceptibility to the development of metabolic diseases. Recently, it has been described that obese subjects have a phenotype of chronic inflammation in organs that are metabolically relevant for glucose homeostasis and energy. Altered expression of immune system molecules such as interleukins IL-1, IL-6, IL-18, tumor necrosis factor alpha (TNF-α), serum amyloid A (SAA), and plasminogen activator inhibitor-1 (PAI-1), among others, has been associated with the development of chronic inflammation in obesity. Chronic inflammation modulates the development of metabolic-related comorbidities like metabolic syndrome (insulin resistance, glucose tolerance, hypertension and hyperlipidemia). Recent evidence suggests that microglia activation in the central nervous system (CNS) is a priority in the deregulation of energy homeostasis and promotes increased glucose levels. This review will cover the most significant advances that explore the molecular signals during microglia activation and inflammatory stage in the brain in the context of obesity, and its influence on the development of metabolic syndrome and type two diabetes

    Current Applications of Mesenchymal Stem Cells for Cartilage Tissue Engineering

    Get PDF
    Articular cartilage injuries caused by traumatic/mechanical progressive degeneration result in joint pain, swelling, the consequent loss of joint function, and eventually osteoarthritis. Articular tissue possesses a poor ability to regenerate that further complicates the therapeutic approaches. Mesenchymal stem cells (MSCs) have emerged as a promising alternative treatment. Recently, it has been reported that a wide variety of strategies ranging from merely using cells in the injured area to employ biofunctional substitutes in which cells are harmonizing with scaffolding and growth factors to create an engineered cartilage tissue

    Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    Get PDF
    Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process

    Therapeutic Potential of Articular Cartilage Regeneration using Tissue Engineering Based on Multiphase Designs

    Get PDF
    Articular cartilage tissue possesses poor ability to regenerate; as the lesion progresses, it extends to the underlying subchondral bone and an osteochondral (OC) defect appears complicating the therapeutic approaches. Cartilage tissue engineering has become a very active research area capable of contributing to medical technology innovation. In this regard, the development of new biomaterials in combination with cells represents one of the best alternatives for the treatment of OC injuries. In the last decades, the strategies have been designed without considering the cartilage as a complex tissue with a functionally stratified three-dimensional structure. Today, efforts are focused on creating a starting point in the process of cartilage formation with the development of a multiphase implants that recapitulates the cartilage as an OC unit, which improves its integration. This chapter will focus on a review of tissue engineering based on multiphase designs for cartilage and OC injuries, highlighting the importance of the biomaterial selection, and also the relevance of a biomimetic approach to reach a suitable microenvironment for the differentiation and maturation of the chondral tissue
    corecore