24 research outputs found

    The Impact of COVID-19 on the Sustainable Development Goals: Achievements and Expectations

    Get PDF
    The COVID-19 pandemic has had a significant impact on almost all the Sustainable Development Goals (SDGs), leaving no country unaffected. It has caused a shift in political agendas, but also in lines of research. At the same time, the world is trying to make the transition to a more sustainable economic model. The research objectives of this paper are to explore the impact of COVID-19 on the fulfilment of the SDGs with regard to the research of the scientific community, and to analyze the presence of the Circular Economy (CE) in the literature. To this end, this research applies bibliometric analysis and a systematic review of the literature, using VOSviewer for data visualization. Five clusters were detected and grouped according to the three dimensions of sustainability. The extent of the effects of the health, economic and social crisis resulting from the pandemic, in addition to the climate crisis, is still uncertain, but it seems clear that the main issues are inefficient waste management, supply chain issues, adaptation to online education and energy concerns. The CE has been part of the solution to this crisis, and it is seen as an ideal model to be promoted based on the opportunities detected

    Do University Students’ Security Perceptions Influence Their Walking Preferences and TheirWalking Activity? A Case Study of Granada (Spain)

    Get PDF
    Data Availability Statement: The data presented in this study are available on request from the corresponding author. Data was obtained from own survey and are available with the permission of all authors.A sustainable city must be a safe place for its inhabitants when walking, with the absence of fear of crime being one of its main attributes. Although perceived insecurity is one of the main deterrents of walking activity, this relationship requires some clarification in environments which are walkable and safe, with low crime rates. This article contributes to the evidence for the influence of perceived security on walking activity and, as a novel aspect, also analyzes the effects of perceived security on walking as the preferred travel mode. In order to study this relationship, we use a method that combines non-linear principal component analysis (NLPCA) and a logit model (LM). The data are taken from a survey of university students carried out in the city of Granada. Results show that gender and perceived security have a greater effect on the choice of walking as the preferred travel mode, while location factors have significantly more weight in the explanation of the choice of walking as the most usual travel mode. These findings may be extended to other urban areas and can be of use for the implementation of urban policies aimed at designing the built environment to develop more sustainable citiesR+D+i ERDF B-SEJ-238-UGR2

    Dlk1 expression relates to visceral fat expansion and insulin resistance in male and female rats with postnatal catch-up growth

    Get PDF
    Background: Although prenatal and postnatal programming of metabolic diseases in adulthood is well established, the mechanims underpinning metabolic programming are not. DLK1, a key regulator of fetal development, inhibits adipocyte differentiation and restricts fetal growth. Methods: Assess Dlk1 expression in Wistar rat model of catch-up growth following intrauterine restriction. Dams fed ad libitum deliverd control pups (C) and dams on a 50% calorie-restricted diet delivered pups with low birth weight (R). Restricted offspring fed a standard rat chow showd catch-up growth (R/C) but those kept on a calorie-restricted diet did not (R/R). Results: Decreased Dlk1 expression was observed in adipose tissue and skeletal muscle of R/C pups along with excessive visceral fat accumulation, decreased circulating adiponectin, increased triglycerides and HOMA-IR (from p<0.05 to p<0.001). Moreover, in R/C pups, the reduced Dlk1 expression in adipose tissue and skeletal muscle correlated with visceral fat (r= -0.820; p<0.0001) and HOMA-IR (r= -0.745; p=0.002). Conclusions: Decreased Dlk1 expression relates to visceral fat expansion and insulin resistance in a rat model of catch-up growth following prenatal growth restriction. Modulation of Dlk1 expression could be among the targets of the early prevention of fetal preogramming of adult metabolic disorders

    Catch-up growth in juvenile rats, fat expansion, and dysregulation of visceral adipose tissue

    Get PDF
    BACKGROUND: Accelerated catch-up growth following intrauterine restriction increases the risk of developing visceral adiposity and metabolic abnormalities. However, the underlying molecular mechanisms of such metabolic programming are still poorly understood. METHODS: A Wistar rat model of catch-up growth following intrauterine restriction was used. A gene expression array was performed in the retroperitoneal adipose tissue sampled at postnatal day (PD) 42. RESULTS: Five hundred and forty-six differentially expressed genes (DEGs) were identified (adjusted p value < 0.05). Gene ontology enrichment analysis identified pathways related to immune and lipid metabolic processes, brown fat cell differentiation, and regulation of PI3K. Ccl21, Npr3, Serpina3n, Pnpla3, Slc2a4, and Serpina12 were validated to be upregulated in catch-up pups (all p < 0.01) and related to several fat expansion and metabolic parameters, including body weight at PD42, postnatal body weight gain, white and brown adipose tissue mass, plasma triglycerides, and insulin resistance index (all p < 0.05). CONCLUSIONS: Genes related to immune and metabolic processes were upregulated in retroperitoneal adipose tissue following catch-up growth in juvenile rats and were found to be associated with fat expansion and metabolic parameters. Our results provide evidence for several dysregulated genes in white adipose tissue that could help develop novel strategies to prevent the metabolic abnormalities associated with catch-up growth

    Renal size and cardiovascular risk in prepubertal children

    Get PDF
    Renal size is an important parameter for the evaluation and diagnosis of kidney disease and has been associated with several cardiovascular risk factors in patients with kidney failure. These results are however discordant and studies in healthy children are lacking. We aimed to study the association between renal size (length and volume) and cardiovascular risk parameters in healthy children. Clinical, analytical and ultrasound parameters [renal length, renal volume, perirenal fat and carotid intima-media thickness (cIMT)] were determined in 515 healthy prepubertal children (176 lean, 208 overweight and 131 obese). Renal length and volume associated significantly and positively with several anthropometric and cardiovascular risk parameters including cIMT and systolic blood pressure (SBP) (all p < 0.001). Renal length and volume associated with cIMT and SBP in all study subgroups, but these associations were predominant in obese children, in whom these associations were independent after adjusting for age, gender and BSA (all p < 0.05). In multivariate analyses in the study subjects as a whole, renal length was an independent predictor of cIMT (β = 0.310, p < 0.0001) and SBP (β = 0.116, p = 0.03). Renal size associates with cIMT and SBP, independent of other well-established cardiovascular risk factors, and may represent helpful parameters for the early assessment of cardiovascular risk in children

    Metabolically Healthy Obesity and High Carotid Intima-Media Thickness in Children and Adolescents: International Childhood Vascular Structure Evaluation Consortium

    Get PDF
    OBJECTIVE It has been argued that metabolically healthy obesity (MHO) does not increase cardiovascular disease (CVD) risk. This study examines the association of MHO with carotid intima-media thickness (cIMT), a proxy of CVD risk, in children and adolescents. RESEARCH DESIGN AND METHODS Data were available for 3,497 children and adolescents aged 6–17 years from five population-based cross-sectional studies in Brazil, China, Greece, Italy, and Spain. Weight status categories (normal, overweight, and obese) were defined using BMI cutoffs from the International Obesity Task Force. Metabolic status (defined as "healthy" [no risk factors] or "unhealthy" [one or more risk factors]) was based on four CVD risk factors: elevated blood pressure, elevated triglyceride levels, reduced HDL cholesterol, and elevated fasting glucose. High cIMT was defined as cIMT ≥90th percentile for sex, age, and study population. Logistic regression model was used to examine the association of weight and metabolic status with high cIMT, with adjustment for sex, age, race/ethnicity, and study center. RESULTS In comparison with metabolically healthy normal weight, odds ratios (ORs) for high cIMT were 2.29 (95% CI 1.58–3.32) for metabolically healthy overweight and 3.91 (2.46–6.21) for MHO. ORs for high cIMT were 1.44 (1.03–2.02) for unhealthy normal weight, 3.49 (2.51–4.85) for unhealthy overweight, and 6.96 (5.05–9.61) for unhealthy obesity. CONCLUSIONS Among children and adolescents, cIMT was higher for both MHO and metabolically healthy overweight compared with metabolically healthy normal weight. Our findings reinforce the need for weight control in children and adolescents irrespective of their metabolic status

    Role of endogenous IL-6 in the neonatal expansion and functionality of Wistar rat pancreatic alpha cells.

    No full text
    Plasma glucagon concentrations rise sharply during the early postnatal period. This condition is associated with increased alpha cell mass. However, the trophic factors that regulate alpha cell turnover during the perinatal period have not been studied. Macrophage infiltrations are present in the neonatal pancreas, and this cell type releases cytokines such as IL-6. Alpha cells have been identified as a primary target of IL-6 actions. We therefore investigated the physiological relevance of IL-6 to neonatal pancreatic alpha cell maturation.info:eu-repo/semantics/publishe

    Early undernutrition increases glycogen content and reduces the activated forms of GSK3, AMPK, p38 MAPK, and JNK in the cerebral cortex of suckling rats.

    No full text
    Exposure to maternal undernutrition during development increases the risk for neurological and cognitive defects. However, little is known about the underlying mechanisms involved. Peripheral responses to insulin are increased following food-restriction, thus the possibility arises that brain insulin actions are affected by undernutrition, causing damages to the higher cerebral functions. In this study, we examined the effects of early undernutriton on molecular targets of insulin actions such as glucose transporters, glycogen, glycogen synthase kinase-3 (GSK3) and mitogen-activated protein kinases, as well as proteins involved in apoptosis in the cortex from 10-day-old rats. We show that undernutrition results in an enhanced glycogen content which is confined to astrocytes, according to our histochemical approaches. Cortical phospho-GSK3 is also increased. In addition to glycogen synthesis, GSK3 regulates crucial cellular processes. Therefore, its elevated degree of phosphorylation may have an impact on these processes and, consequently, on the cortical development. Phospho-p38 and both total JNK and phospho-JNK, which regulate apoptosis, are reduced following undernutrition. However, cleaved caspase 3 is not altered, which suggests that this condition does not induce extensive modifications to the cortical apoptosis. Thus, our results indicate that undernutrition gives rise to molecular alterations that may have repercussions on cerebral cortex development and functions.FLWINinfo:eu-repo/semantics/publishe

    Early undernutrition induces glucagon resistance and insulin hypersensitivity in the liver of suckling rats.

    No full text
    Developing brains are vulnerable to nutritional insults. Early undernutrition alters their structure and neurochemistry, inducing long-term pathological effects whose causal pathways are not well defined. During suckling, the brain uses glucose and ketone bodies as substrates. Milk is a high-fat low-carbohydrate diet, and the liver must maintain high rates of gluconeogenesis and ketogenesis to address the needs of these substrates. Insulin and glucagon play major roles in this adaptation: throughout suckling, their blood concentrations are low and high, respectively, and the liver maintains low insulin sensitivity and increased glucagon responsiveness. We propose that disturbances in the endocrine profile and available plasma substrates along with undernutrition-related changes in brain cortex capacity for ketone utilization may cause further alterations in some brain functions. We explored this hypothesis in 10-day-old suckling rats whose mothers were severely food restricted from the 14th day of gestation. We measured the plasma/serum concentrations of glucose, ketone body, insulin and glucagon, and hepatic insulin and glucagon responses. Undernutrition led to hypoglycemia and hyperketonemia to 84% (P < 0.001) and 144% (P < 0.001) of control values, respectively. Liver responsiveness to insulin and glucagon became increased and reduced, respectively; intraperitoneal glucagon reduced liver glycogen by 90% (P < 0.01) in control and by 35% (P < 0.05) in restricted. Cortical enzymes of ketone utilization remained unchanged, but their carrier proteins were altered: monocarboxylate transporter (MCT) 1 increased: 73 ± 14, controls; 169 ± 20, undernourished (P < 0.01; densitometric units); MCT2 decreased: 103 ± 3, controls; 37 ± 4, undernourished (P < 0.001; densitometric units). All of these changes, coinciding with the brain growth spurt, may cause some harmful effects associated with early undernutrition.info:eu-repo/semantics/publishe
    corecore