15 research outputs found

    Elastic Positron-Proton Scattering at Low Q2^2

    Full text link
    Systematic differences in the the proton's charge radius, as determined by ordinary atoms and muonic atoms, have caused a resurgence of interest in elastic lepton scattering measurements. The proton's charge radius, defined as the slope of the charge form factor at Q2^2=0, does not depend on the probe. Any difference in the apparent size of the proton, when determined from ordinary versus muonic hydrogen, could point to new physics or need for the higher order corrections. While recent measurements seem to now be in agreement, there is to date no high precision elastic scattering data with both electrons and positrons. A high precision proton radius measurement could be performed in Hall B at Jefferson Lab with a positron beam and the calorimeter based setup of the PRad experiment. This measurement could also be extended to deuterons where a similar discrepancy has been observed between the muonic and electronic determination of deuteron charge radius. A new, high precision measurement with positrons, when viewed alongside electron scattering measurements and the forthcoming MUSE muon scattering measurement, could help provide new insights into the origins of the proton radius puzzle, and also provide new experimental constraints on radiative correction calculations.Comment: 9 pages, 8 figures. arXiv admin note: substantial text overlap with arXiv:2007.1508

    The Solenoidal Large Intensity Device (SoLID) for JLab 12 GeV

    Full text link
    The Solenoidal Large Intensity Device (SoLID) is a new experimental apparatus planned for Hall A at the Thomas Jefferson National Accelerator Facility (JLab). SoLID will combine large angular and momentum acceptance with the capability to handle very high data rates at high luminosity. With a slate of approved high-impact physics experiments, SoLID will push JLab to a new limit at the QCD intensity frontier that will exploit the full potential of its 12 GeV electron beam. In this paper, we present an overview of the rich physics program that can be realized with SoLID, which encompasses the tomography of the nucleon in 3-D momentum space from Semi-Inclusive Deep Inelastic Scattering (SIDIS), expanding the phase space in the search for new physics and novel hadronic effects in parity-violating DIS (PVDIS), a precision measurement of J/ψJ/\psi production at threshold that probes the gluon field and its contribution to the proton mass, tomography of the nucleon in combined coordinate and momentum space with deep exclusive reactions, and more. To meet the challenging requirements, the design of SoLID described here takes full advantage of recent progress in detector, data acquisition and computing technologies. In addition, we outline potential experiments beyond the currently approved program and discuss the physics that could be explored should upgrades of CEBAF become a reality in the future.Comment: This white paper for the SoLID program at Jefferson Lab was prepared in part as an input to the 2023 NSAC Long Range Planning exercise. To be submitted to J. Phys.

    Precision measurements of A1N in the deep inelastic regime

    Get PDF
    We have performed precision measurements of the double-spin virtual-photon asymmetry A1A1 on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized 3He target. Our data cover a wide kinematic range 0.277≀x≀0.5480.277≀x≀0.548 at an average Q2Q2 value of 3.078 (GeV/c)2, doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of anA1n zero crossing near x=0.5x=0.5. We find no evidence of a transition to a positive slope in(Δd+ΔdÂŻ)/(d+dÂŻ) up to x=0.548x=0.548

    Study of quasi-elastic Âč⁶O (e,e'p) reaction at high recoil momenta

    No full text
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Physics, 1999.Includes bibliographical references (p. 187-191).by Nilanga Kumara Bamunusinha Liyanage.Ph.D

    Performance of a resistive micro-well detector with capacitive-sharing strip anode readout

    No full text
    The present study is carried out to demonstrate a new type of high-performance readout structure with low readout channel count developed for large-area micro pattern gaseous detectors. The structure exploits capacitive coupling between a vertical stack of 5ÎŒm thick copper pad layers sandwiched between 50ÎŒm thick polyimide foils to simultaneously transfer and spread the avalanche charges from the gaseous detector’s amplification structure to several strips or pads in the anode readout plane. The unique feature of the lateral spread of the avalanche charge size on several readout strips or pads is possible owing to well-defined configuration and sizes of the pads in layers of the vertical stack. This is known as a “capacitive-sharing” readout structure and this opens the door for high spatial resolution performance with low readout channel counts for large-area Micro Pattern Gaseous Detectors. Capacitive-sharing readout structures are fabricated using standard printed circuits boards manufacturing process. The concept is highly versatile as it can easily be implemented in any type of Micro Pattern Gaseous Detector’s amplification structure (Gas Electron Multipliers, micro-mesh gaseous structures, resistive micro-well detectors) and with a wide range of readout patterns (pads, strips, zigzags etc.). The technology also has a high degree of flexibility in terms of readout segmentation (pads or strip) pitch, with minimum impact on spatial resolution performances. The present study provides a detailed description of the capacitive-sharing readout concept and discusses a small resistive micro-well detectors prototype assembled with a two-dimensional capacitive-sharing strip readout structure as a proof of concept and with strip pitch of 800 ÎŒm in both X and Y direction. The prototype was characterized in electron beam in the Hall D Beam Test setup at Jefferson Lab and a spatial resolution of (60 ± 1) ÎŒm was achieved for both X and Y strips with an efficiency of (98.0 ± 0.9) % at the plateau and a signal arrival time jitter between neighboring strips less (6.00 ± 0.04) ns. Finally, we explore new ideas to expand the concept of capacitive-sharing readout structures to large particle detectors for future large scale particle physics experiments
    corecore