105 research outputs found

    Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting.

    Get PDF
    Photo-electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar-to-H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano-architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible-light-active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm(-2) at 1.23 V versus RHE, which is among the highest for oxide-based photoanodes and over 4 times higher than the unstructured planar photoanode.UK Engineering and Physical Science Research Council. Grant Numbers: EP/H00338X/2, EP/G060649/1 European Community's Seventh Framework Programme. Grant Number: FP7/2007–2013 CARINHYPH project. Grant Number: 310184 Minstry of Science and Technology of Taiwan. Grant Number: 102-2218-E-006-014-MY2 Christian Doppler Research Association OMV Group, a Marie Curie Intra-European Fellowship. Grant Number: FP7-PEOPLE-2011-IEF 298012 ERC. Grant Number: 320503This is the final published version currently under embargo. This will be updated once the publisher has granted a CC BY license

    Assembly of Inflammation-Related Genes for Pathway-Focused Genetic Analysis

    Get PDF
    Recent identifications of associations between novel variants in inflammation-related genes and several common diseases emphasize the need for systematic evaluations of these genes in disease susceptibility. Considering that many genes are involved in the complex inflammation responses and many genetic variants in these genes have the potential to alter the functions and expression of these genes, we assembled a list of key inflammation-related genes to facilitate the identification of genetic associations of diseases with an inflammation-related etiology. We first reviewed various phases of inflammation responses, including the development of immune cells, sensing of danger, influx of cells to sites of insult, activation and functional responses of immune and non-immune cells, and resolution of the immune response. Assisted by the Ingenuity Pathway Analysis, we then identified 17 functional sub-pathways that are involved in one or multiple phases. This organization would greatly increase the chance of detecting gene-gene interactions by hierarchical clustering of genes with their functional closeness in a pathway. Finally, as an example application, we have developed tagging single nucleotide polymorphism (tSNP) arrays for populations of European and African descent to capture all the common variants of these key inflammation-related genes. Assays of these tSNPs have been designed and assembled into two Affymetrix ParAllele customized chips, one each for European (12,011 SNPs) and African (21,542 SNPs) populations. These tSNPs have greater coverage for these inflammation-related genes compared to the existing genome-wide arrays, particularly in the African population. These tSNP arrays can facilitate systematic evaluation of inflammation pathways in disease susceptibility. For additional applications, other genotyping platforms could also be employed. For existing genome-wide association data, this list of key inflammation-related genes and associated subpathways can facilitate comprehensive inflammation pathway- focused association analyses

    Network Topologies and Dynamics Leading to Endotoxin Tolerance and Priming in Innate Immune Cells

    Get PDF
    The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide) or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction) and one for tolerance (inhibitor persistence). These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.Comment: 15 pages, 8 figures, submitte

    Characterization of the formation of NaA zeolite membrane under microwave radiation

    No full text

    Influence of Phosphine Concentration on Propylene Hydroformylation over the PPh3-Rh/SiO2 Catalyst

    No full text
    The effect of triphenyl phosphine concentration in the novel PPh3-Rh/SiO2 catalyst for propylene hydroformylation was studied and found an optimum P/Rh ratio of 15, a butyraldehyde till ratio of 14, a butyraldehyde TOF of 241 h(-1), and high catalytic stability for PPh3-Rh/SiO2. Solid-state P-31 NMR shows that in an atmosphere of syngas the physically adsorbed PPh3 migrates onto the surface of Rh/SiO2 where it chemically adsorbs and then promotes the in situ formation of carbonyl phosphine complexes

    Comparison of 6Mo/MCM-22 and 6Mo/ZSM-5 in the MDA process

    No full text

    preparationofhighperformancesilicalite1membranesonsilicatubesbyinsituhydrothermalsynthesis

    No full text
    利用原位水热合成法在二氧化硅陶瓷管上成功制备出高性能的silicalite-1分子筛膜,并利用扫描电子显微镜进行了表征.结果表明,在二氧化硅陶瓷管上合成的分子筛膜比在氧化铝陶瓷管上合成的分子筛膜具有更高的分离性能和热稳定性,说明二氧化硅载体更适合制备高性能的silicalite-1分子筛膜
    corecore