236 research outputs found

    Cyber-physical manufacturing cloud: An efficient method of building digital twin for 3D printer by adapting MTConnect protocol

    Get PDF
    The common modeling of a virtual machine is using an information model to describe the physics of machines. The integration of digital twins into productive cyber-physical cloud manufacturing (CPCM) systems imposes strict requirements such as reducing overhead and saving resources for the systems. In this paper, we investigate a new method for building cloud-based digital twins (CBDT), which can be adapted to the CPCM platform. Our method helps reduce computing resources in the processing center and guarantees the fastest speed of the interactions between the human users and physical machines. We introduce a knowledge resource center (KRC) built on a cloud server for information intensive applications. An information model for one type of 3D printers is designed and integrated into the core of the KRC as a shared resource. Several experiments and results are provided to show the performance of the CBDT compared to traditional methods --Abstract, page iii

    Modeling of Cloud-Based Digital Twins for Smart Manufacturing with MT Connect

    Get PDF
    The common modeling of digital twins uses an information model to describe the physical machines. The integration of digital twins into productive cyber-physical cloud manufacturing (CPCM) systems imposes strong demands such as reducing overhead and saving resources. In this paper, we develop and investigate a new method for building cloud-based digital twins (CBDT), which can be adapted to the CPCM platform. Our method helps reduce computing resources in the information processing center for efficient interactions between human users and physical machines. We introduce a knowledge resource center (KRC) built on a cloud server for information intensive applications. An information model for one type of 3D printers is designed and integrated into the core of the KRC as a shared resource. Several experiments are conducted and the results show that the CBDT has an excellent performance compared to existing methods

    MiR-199a-5P promotes osteogenic differentiation of human stem cells from apical papilla via targeting IFIT2 in apical periodontitis

    Get PDF
    IntroductionPeriapical alveolar bone loss is the common consequence of apical periodontitis (AP) caused by persistent local inflammation around the apical area. Human stem cells from apical papilla (hSCAPs) play a crucial role in the restoration of bone lesions during AP. Studies have recently identified the critical role of microRNAs (miRNAs) involved in AP pathogenesis, but little is known about their function and potential molecular mechanism, especially in the osteogenesis of hSCAPs during AP. Here, we investigated the role of clinical sample-based specific miRNAs in the osteogenesis of hSCAPs.MethodsDifferential expression of miRNAs were detected in the periapical tissues of normal and patients with AP via transcriptomic analysis, and the expression of miR-199a-5p was confirmed by qRT-PCR. Treatment of hSCAPs with miR-199a-5p mimics while loaded onto beta-tricalcium phosphate (β-TCP) ceramic particle scaffold to explore its effect on osteogenesis in vivo. RNA binding protein immunoprecipitation (RIP) and Luciferase reporter assay were conducted to identify the target gene of miR-199a-5p.ResultsThe expression of miR-199a-5p was decreased in the periapical tissues of AP patients, and miR-199a-5p mimics markedly enhanced cell proliferation and osteogenic differentiation of hSCAPs, while miR-199a-5p antagomir dramatically attenuated hSCAPs osteogenesis. Moreover, we identified and confirmed Interferon Induced Protein with Tetratricopeptide Repeats 2 (IFIT2) as a specific target of miR-199a-5p, and silencing endogenous IFIT2 expression alleviated the inhibitory effect of miR-199a-5p antagomir on the osteogenic differentiation of hSCAPs. Furthermore, miR-199a-5p mimics transfected hSCAPs loaded onto beta-tricalcium phosphate (β-TCP) scaffolds induced robust subcutaneous ectopic bone formation in vivo.DiscussionThese results strengthen our understanding of predictors and facilitators of the key AP miRNAs (miR-199a-5p) in bone lesion repair under periapical inflammatory conditions. And the regulatory networks will be instrumental in exploring the underlying mechanisms of AP and lay the foundation for future regenerative medicine based on dental mesenchymal stem cells

    Non-targeted Metabolomics Analysis of Metabolic Differences among Liuyang Douchi Fermented by Different Strains

    Get PDF
    In order to investigate the metabolic differences among Liuyang Douchi fermented by different starter cultures, the contents of total acid and amino nitrogen in Douchi fermented naturally and by using Aspergillus flavus 7214 (AF 7214), A. flavus 7622 (AF 7622), their mixture (AF 7214 + AF 7622) or A. orzyae were determined, and the difference in metabolites among these fermentation strategies was explored by liquid chromatography-mass spectrometry (LC-MS). The results showed that among the five Douchi samples, Douchi fermented by AF 7214 had the highest contents of total acid (3.52%) and amino nitrogen (1.47 g/100 g). The results of partial least squares discriminant analysis (PLS-DA) indicated that significant differences in metabolites were observed among the Douchi samples, and the composition of metabolites in Douchi fermented by AF 7622 showed the smallest difference from that in naturally fermented Douchi. Further analysis revealed that the differential metabolites between Douchi fermented naturally and by using starter cultures were mainly involved in amino acid metabolic pathways, especially arginine biosynthesis. A total of 62 key differential metabolites among the five samples were identified using variable importance in the projection (VIP) greater than 1.5 and P < 0.05 as criteria, including 26 amino acids and their derivatives such as L-lysine, L-serine and 2-methylserine, which indicated that enhanced fermentation showed the most notable influence on the metabolism of amino acids. This study has provided a new understanding of the formation of metabolites during the enhanced fermentation of Liuyang Douchi

    NHX antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development

    Get PDF
    AtNHX5 and AtNHX6 are endosomal Na+,K+/H+ antiporters that are critical for growth and development in Arabidopsis, but the mechanism behind their action remains unknown. Here, we report that AtNHX5 and AtNHX6, functioning as H+ leak, control auxin homeostasis and auxin-mediated development. We found that nhx5 nhx6 exhibited growth variations of auxin-related defects. We further showed that nhx5 nhx6 was affected in auxin homeostasis. Genetic analysis showed that AtNHX5 and AtNHX6 were required for the function of the ER-localized auxin transporter PIN5. Although AtNHX5 and AtNHX6 were co-localized with PIN5 at ER, they did not interact directly. Instead, the conserved acidic residues in AtNHX5 and AtNHX6, which are essential for exchange activity, were required for PIN5 function. AtNHX5 and AtNHX6 regulated the pH in ER. Overall, AtNHX5 and AtNHX6 may regulate auxin transport across the ER via the pH gradient created by their transport activity. H+-leak pathway provides a fine-tuning mechanism that controls cellular auxin fluxes

    Synthesis of TiC nanotube arrays and their excellent supercapacitor performance

    Get PDF
    Nanostructured metal carbides have numerous applications in catalysis and energy storage. However, directional construction remains a significant challenge. In this work, a novel strategy for the direct synthesis of nanostructured metal carbides using nanostructured metal oxides as the precursor is developed. TiO2 nanotube arrays (TiO2 NTAs) can be successfully transformed into TiC nanotube arrays (TiC NTAs) through electro-deoxidation and carbonization reactions in a low-temperature molten salt. TiC NTAs have a highly oriented and ordered array structure, which shows the advantages of large specific surface area, direct electron transport, and good chemical stability. Here, TiC NTA electrodes and PVA-H3PO4 electrolyte gel were assembled into a flexible quasi-solid-state supercapacitor to characterize their energy storage performance. The results show that the TiC NTA electrodes exhibit a high areal capacitance of 53.3 mF cm−2, excellent cycling stability, and mechanical flexibility. Moreover, the energy densities can reach 4.6 μW h cm−2 at a power density of 78.9 μW cm−2. This work provides a new strategy for the directed synthesis of nanostructured metal carbides and demonstrates the energy storage application potential of TiC NTAs. It is expected that this work will contribute to the development of the synthesis and application of nanostructured metal carbides

    Endoplasmic Reticulum Aminopeptidase 1 Is Involved in Anti-viral Immune Response of Hepatitis B Virus by Trimming Hepatitis B Core Antigen to Generate 9-Mers Peptides

    Get PDF
    Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a processing enzyme of antigenic peptides presented to major histocompatibility complex (MHC) class I molecules. ERAP1-dependent trimming of epitope repertoire determines an efficacy of adoptive CD8+ T-cell responses in several viral diseases; however, its role in hepatitis B virus (HBV) infection remains unknown. Here, we show that the serum level of ERAP1 in patients with chronic hepatitis B (CHB) (n = 128) was significantly higher than that of healthy controls (n = 44) (8.78 ± 1.82 vs. 3.52 ± 1.61, p &lt; 0.001). Furthermore, peripheral ERAP1 level is moderately correlated with HBV DNA level in patients with CHB (r = 0.731, p &lt; 0.001). HBV-transfected HepG2.2.15 cells had substantially increased ERAP1 expression and secretion than the germline HepG2 cells (p &lt; 0.001). The co-culture of ERAP1-specific inhibitor ERAP1-IN-1 pretreated HepG2.2.15 cells or ERAP1 knockdown HepG2.2.15 cells with CD8+ T cells led to 14–24% inhibition of the proliferation of CD8+ T cells. Finally, liquid chromatography tandem mass spectrometry (LC-MS/MS) test demonstrated that ERAP1-IN-1 blocks completely the production of a 9-mers peptide (30–38, LLDTASALY) derived from Hepatitis B core antigen (HBcAg). The predictive analysis by NetMHCpan-4.1 server showed that human leukocyte antigen (HLA)-C*04:01 is a strong binder for the 9-mers peptide in HepG2.2.15 cells. Taken together, our results demonstrated that ERAP1 trims HBcAg to produce 9-mers LLDTASALY peptides for binding onto HLA-C*04:01 in HepG2.2.15 cells, facilitating the potential activation of CD8+ T cells
    • …
    corecore