449 research outputs found

    The Adsorption and Decomposition of C 2

    Full text link

    Temperature-dependent Raman study of CeFeAsO0.9F0.1 Superconductor: Crystal field excitations, phonons and their coupling

    Full text link
    We report temperature-dependent Raman spectra of CeFeAsO0.9F0.1 from 4 K to 300 K in spectral range of 60 to 1800 cm-1 and interpret them using estimates of phonon frequencies obtained from first-principles density functional calculations. We find evidence for a strong coupling between the phonons and crystal field excitations; in particular Ce3+ crystal field excitation at 432 cm-1 couples strongly with Eg oxygen vibration at 389 cm-1 . Below the superconducting transition temperature, the phonon mode near 280 cm-1 shows softening, signaling its coupling with the superconducting gap. The ratio of the superconducting gap to Tc thus estimated to be ~ 10 suggests CeFeAsO0.9F0.1 as a strong coupling superconductor. In addition, two high frequency modes observed at 1342 cm-1 and 1600 cm-

    Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination

    Get PDF
    The "canonical" proteasomal degradation signal is a substrate-anchored polyubiquitin chain. However, a handful of proteins were shown to be targeted following monoubiquitination. In this study, we established-in both human and yeast cells-a systematic approach for the identification of monoubiquitination-dependent proteasomal substrates. The cellular wild-type polymerizable ubiquitin was replaced with ubiquitin that cannot form chains. Using proteomic analysis, we screened for substrates that are nevertheless degraded under these conditions compared with those that are stabilized, and therefore require polyubiquitination for their degradation. For randomly sampled representative substrates, we confirmed that their cellular stability is in agreement with our screening prediction. Importantly, the two groups display unique features: monoubiquitinated substrates are smaller than the polyubiquitinated ones, are enriched in specific pathways, and, in humans, are structurally less disordered. We suggest that monoubiquitination-dependent degradation is more widespread than assumed previously, and plays key roles in various cellular processes

    Familial Mediterranean fever, Inflammation and Nephrotic Syndrome: Fibrillary Glomerulopathy and the M680I Missense Mutation

    Get PDF
    BACKGROUND: Familial Mediterranean fever (FMF) is an autosomal recessive disease characterized by inflammatory serositis (fever, peritonitis, synovitis and pleuritis). The gene locus responsible for FMF was identified in 1992 and localized to the short arm of chromosome 16. In 1997, a specific FMF gene locus, MEFV, was discovered to encode for a protein, pyrin that mediates inflammation. To date, more than forty missense mutations are known to exist. The diversity of mutations identified has provided insight into the variability of clinical presentation and disease progression. CASE REPORT: We report an individual heterozygous for the M680I gene mutation with a clinical diagnosis of FMF using the Tel-Hashomer criteria. Subsequently, the patient developed nephrotic syndrome with biopsy-confirmed fibrillary glomerulonephritis (FGN). Further diagnostic studies were unremarkable with clinical workup negative for amyloidosis or other secondary causes of nephrotic syndrome. DISCUSSION: Individuals with FMF are at greater risk for developing nephrotic syndrome. The most serious etiology is amyloidosis (AA variant) with renal involvement, ultimately progressing to end-stage renal disease. Other known renal diseases in the FMF population include IgA nephropathy, IgM nephropathy, Henoch-Schönlein purpura as well as polyarteritis nodosa. CONCLUSION: To our knowledge, this is the first association between FMF and the M680I mutation later complicated by nephrotic syndrome and fibrillary glomerulonephritis

    The Association between OGG1 Ser326Cys Polymorphism and Lung Cancer Susceptibility: A Meta-Analysis of 27 Studies

    Get PDF
    Background: Numerous studies have investigated association of OGG1 Ser326Cys polymorphism with lung cancer susceptibility; however, the findings are inconsistent. Therefore, we performed a meta-analysis based on 27 publications encompass 9663 cases and 11348 controls to comprehensively evaluate such associations. Methods: We searched publications from MEDLINE and EMBASE which were assessing the associations between OGG1 Ser326Cys polymorphism and lung cancer risk. We calculated pooled odds ratio (OR) and 95 % confidence interval (CI) by using either fixed-effects or random-effects model. We used genotype based mRNA expression data from HapMap for SNP rs1052133 in normal cell lines among 270 subjects with four different ethnicities. Results: The results showed that individuals carrying the Cys/Cys genotype did not have significantly increased risk for lung cancer (OR = 1.15, 95 % CI = 0.98–1.36) when compared with the Ser/Ser genotype; similarly, no significant association was found in recessive, dominant or heterozygous co-dominant model (Ser/Cys vs. Cys/Cys). However, markedly increased risks were found in relatively large sample size (Ser/Ser vs. Cys/Cys: OR = 1.29, 95 % CI = 1.13–1.48, and recessive model: OR = 1.19, 95 % CI = 1.07–1.32). As to histological types, we found the Cys/Cys was associated with adenocarcinoma risk (Ser/Ser vs. Cys/Cys: OR = 1.32, 95 % CI = 1.12–1.56; Ser/Cys vs. Cys/Cys: OR = 1.19, 95 % CI = 1.04–1.37, and recessive model OR = 1.23, 95 % CI = 1.08–1.40). No significant difference of OGG1 mRNA expression was found among genotypes between differen

    Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy

    Get PDF
    Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2

    Active liquid crystal tuning of metallic nanoantenna enhanced light emission from colloidal quantum dots

    Get PDF
    A system comprising an aluminum nanoantenna array on top of a luminescent colloidal quantum dot waveguide and covered by a thermotropic liquid crystal (LC) is introduced. By heating the LC above its critical temperature, we demonstrate that the concomitant refractive index change modifies the hybrid plasmonic-photonic resonances in the system. This enables active control of the spectrum and directionality of the narrow-band (similar to 6 nm) enhancement of quantum dot photoluminescence by the metallic nanoantennas

    Calcineurin Controls Voltage-Dependent-Inactivation (VDI) of the Normal and Timothy Cardiac Channels

    Get PDF
    Ca2+-entry in the heart is tightly controlled by Cav1.2 inactivation, which involves Ca2+-dependent inactivation (CDI) and voltage-dependent inactivation (VDI) components. Timothy syndrome, a subtype-form of congenital long-QT syndrome, results from a nearly complete elimination of VDI by the G406R mutation in the α11.2 subunit of Cav1.2. Here, we show that a single (A1929P) or a double mutation (H1926A-H1927A) within the CaN-binding site at the human C-terminal tail of α11.2, accelerate the inactivation rate and enhances VDI of both wt and Timothy channels. These results identify the CaN-binding site as the long-sought VDI-regulatory motif of the cardiac channel. The substantial increase in VDI and the accelerated inactivation caused by the selective inhibitors of CaN, cyclosporine A and FK-506, which act at the same CaN-binding site, further support this conclusion. A reversal of enhanced-sympathetic tone by VDI-enhancing CaN inhibitors could be beneficial for improving Timothy syndrome complications such as long-QT and autism

    Hillslope Hydrology in Global Change Research and Earth System Modeling

    Get PDF
    Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope‐scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid‐level water, energy, and biogeochemical fluxes. In contrast to the one‐dimensional (1‐D), 2‐ to 3‐mdeep, and free‐draining soil hydrology in most ESM land models, we hypothesize that 3‐D, lateral ridge‐to‐valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions
    • 

    corecore