16 research outputs found

    Sarcoendoplasmic Reticulum Ca2+ ATPase. A Critical Target in Chlorine Inhalation–Induced Cardiotoxicity

    Get PDF
    Autopsy specimens from human victims or experimental animals that die due to acute chlorine gas exposure present features of cardiovascular pathology. We demonstrate acute chlorine inhalation–induced reduction in heart rate and oxygen saturation in rats. Chlorine inhalation elevated chlorine reactants, such as chlorotyrosine and chloramine, in blood plasma. Using heart tissue and primary cardiomyocytes, we demonstrated that acute high-concentration chlorine exposure in vivo (500 ppm for 30 min) caused decreased total ATP content and loss of sarcoendoplasmic reticulum calcium ATPase (SERCA) activity. Loss of SERCA activity was attributed to chlorination of tyrosine residues and oxidation of an important cysteine residue, cysteine-674, in SERCA, as demonstrated by immunoblots and mass spectrometry. Using cardiomyocytes, we found that chlorine-induced cell death and damage to SERCA could be decreased by thiocyanate, an important biological antioxidant, and by genetic SERCA2 overexpression. We also investigated a U.S. Food and Drug Administration–approved drug, ranolazine, used in treatment of cardiac diseases, and previously shown to stabilize SERCA in animal models of ischemia–reperfusion. Pretreatment with ranolazine or istaroxime, another SERCA activator, prevented chlorine-induced cardiomyocyte death. Further investigation of responsible mechanisms showed that ranolazine- and istaroxime-treated cells preserved mitochondrial membrane potential and ATP after chlorine exposure. Thus, these studies demonstrate a novel critical target for chlorine in the heart and identify potentially useful therapies to mitigate toxicity of acute chlorine exposure.This work was supported by the CounterACT Program, National Institutes of Health, Office of the Director, and the National Institute of Environmental Health Sciences grant U54 ES015678 (C.W.W.), and by Children’s Hospital of Colorado/Colorado School of Mines Pilot Award G0100394 and a Children’s Hospital of Colorado Research Institute’s Pilot Award (S.A.)

    Rapid Analysis of Sulfur Mustard Oxide in Plasma Using Gas Chromatography-chemical Ionization-mass Spectrometry for Diagnosis of Sulfur Mustard Exposure

    No full text
    Sulfur mustard (SM) is the most utilized chemical warfare agent in modern history and has caused more casualties than all other chemical weapons combined. SM still poses a threat to civilians globally because of existing stockpiles and ease of production. Exposure to SM causes irritation to the eyes and blistering of skin and respiratory tract. These clinical signs of exposure to SM can take 6–24 h to appear. Therefore, analyzing biomarkers of SM from biological specimens collected from suspected victims is necessary for diagnosis during this latent period. Here, we report a rapid, simple, and direct quantitative analytical method for an important and early SM biomarker, sulfur mustard oxide (SMO). The method includes addition of a stable isotope labeled internal standard, SMO extraction directly into dichloromethane (DCM), rapid drying and reconstitution of the extract, and direct analysis of SMO using gas chromatography-chemical ionization-mass spectrometry. The limit of detection of the method was 0.1 μM, with a linear range from 0.5 to 100 μM. Method selectivity, matrix effect, recovery, and short-term stability were also evaluated. Furthermore, the applicability of the method was tested by analyzing samples from inhalation exposure studies performed in swine. The method was able to detect SMO from 100% of the exposed swine (N = 9), with no interferences present in the plasma of the same swine prior to exposure. The method presented here is the first of its kind to allow for easy and rapid diagnosis of SM poisoning (sample analysis \u3c15 min), especially important during the asymptomatic latency period

    Tissue plasminogen activator (tPA) treatment for COVID‐19 associated acute respiratory distress syndrome (ARDS): A case series

    Get PDF
    A hallmark of severe COVID-19 is coagulopathy, with 71.4% of patients who die of COVID-19 meeting ISTH criteria for disseminated intravascular coagulation (DIC) while only 0.6% of patients who survive meet these criteria (1). Additionally, it has become clear that this is not a bleeding diathesis but rather a predominantly pro-thrombotic DIC with high venous thromboembolism rates, elevated D-dimer levels, high fibrinogen levels in concert with low anti-thrombin levels, and pulmonary congestion with microvascular thrombosis and occlusion on pathology in addition to mounting experience with high rates of central line thrombosis and vascular occlusive events (e.g. ischemic limbs, strokes, etc.) observed by those who care for critically ill COVID-19 patients (1-7). There is evidence in both animals and humans that fibrinolytic therapy in Acute Lung Injury and ARDS improves survival, which also points to fibrin deposition in the pulmonary microvasculature as a contributory cause of ARDS and would be expected to be seen in patients with ARDS and concomitant diagnoses of DIC on their laboratory values such as what is observed in more than 70% of those who die of COVID-19 (8-10)
    corecore