24 research outputs found

    Lateral flow–based nucleic acid detection of SARS-CoV-2 using enzymatic incorporation of biotin-labeled dUTP for POCT use

    Get PDF
    The degree of detrimental effects inflicted on mankind by the COVID-19 pandemic increased the need to develop ASSURED (Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable) POCT (point of care testing) to overcome the current and any future pandemics. Much effort in research and development is currently advancing the progress to overcome the diagnostic pressure built up by emerging new pathogens. LAMP (loop-mediated isothermal amplification) is a well-researched isothermal technique for specific nucleic acid amplification which can be combined with a highly sensitive immunochromatographic readout via lateral flow assays (LFA). Here we discuss LAMP-LFA robustness, sensitivity, and specificity for SARS-CoV-2 N-gene detection in cDNA and clinical swab-extracted RNA samples. The LFA readout is designed to produce highly specific results by incorporation of biotin and FITC labels to 11-dUTP and LF (loop forming forward) primer, respectively. The LAMP-LFA assay was established using cDNA for N-gene with an accuracy of 95.65%. To validate the study, 82 SARS-CoV-2-positive RNA samples were tested. Reverse transcriptase (RT)-LAMP-LFA was positive for the RNA samples with an accuracy of 81.66%; SARS-CoV-2 viral RNA was detected by RT-LAMP-LFA for as low as CT-33. Our method reduced the detection time to 15 min and indicates therefore that RT-LAMP in combination with LFA represents a promising nucleic acid biosensing POCT platform that combines with smartphone based semi-quantitative data analysis.Peer Reviewe

    Replication of cowpox virus in macrophages is dependent on the host range factor p28/N1R

    Get PDF
    Zoonotic orthopoxvirus infections continue to represent a threat to human health. The disease caused by distinct orthopoxviruses differs in terms of symptoms and severity, which may be explained by the unique repertoire of virus factors that modulate the host’s immune response and cellular machinery. We report here on the construction of recombinant cowpox viruses (CPXV) which either lack the host range factor p28 completely or express truncated variants of p28. We show that p28 is essential for CPXV replication in macrophages of human or mouse origin and that the C-terminal RING finger domain of p28 is necessary to allow CPXV replication in macrophages.Peer Reviewe

    SARS-CoV-2 Transmissibility Within Day Care Centers—Study Protocol of a Prospective Analysis of Outbreaks in Germany

    Get PDF
    Introduction: Until today, the role of children in the transmission dynamics of SARS-CoV-2 and the development of the COVID-19 pandemic seems to be dynamic and is not finally resolved. The primary aim of this study is to investigate the transmission dynamics of SARS-CoV-2 in child day care centers and connected households as well as transmission-related indicators and clinical symptoms among children and adults. Methods and Analysis: COALA (“Corona outbreak-related examinations in day care centers”) is a day care center- and household-based study with a case-ascertained study design. Based on day care centers with at least one reported case of SARS-CoV-2, we include one- to six-year-old children and staff of the affected group in the day care center as well as their respective households. We visit each child's and adult's household. During the home visit we take from each household member a combined mouth and nose swab as well as a saliva sample for analysis of SARS-CoV-2-RNA by real-time reverse transcription polymerase chain reaction (real-time RT-PCR) and a capillary blood sample for a retrospective assessment of an earlier SARS-CoV-2 infection. Furthermore, information on health status, socio-demographics and COVID-19 protective measures are collected via a short telephone interview in the subsequent days. In the following 12 days, household members (or parents for their children) self-collect the same respiratory samples as described above every 3 days and a stool sample for children once. COVID-19 symptoms are documented daily in a symptom diary. Approximately 35 days after testing the index case, every participant who tested positive for SARS-CoV-2 during the study is re-visited at home for another capillary blood sample and a standardized interview. The analysis includes secondary attack rates, by age of primary case, both in the day care center and in households, as well as viral shedding dynamics, including the beginning of shedding relative to symptom onset and viral clearance. Discussion: The results contribute to a better understanding of the epidemiological and virological transmission-related indicators of SARS-CoV-2 among young children, as compared to adults and the interplay between day care and households.Peer Reviewe

    Pitfalls in PCR troubleshooting: Expect the unexpected?

    Get PDF
    PCR is a well-understood and established laboratory technique often used in molecular diagnostics. Huge experience has been accumulated over the last years regarding the design of PCR assays and their set-up, including in-depth troubleshooting to obtain the optimal PCR assay for each purpose. Here we report a PCR troubleshooting that came up with a surprising result never observed before. With this report we hope to sensitize the reader to this peculiar problem and to save troubleshooting efforts in similar situations, especially in time-critical and ambitious diagnostic settings

    Equination (inoculation of horsepox): An early alternative to vaccination (inoculation of cowpox) and the potential role of horsepox virus in the origin of the smallpox vaccine

    Get PDF
    For almost 150 years after Edward Jenner had published the “Inquiry” in 1798, it was generally assumed that the cowpox virus was the vaccine against smallpox. It was not until 1939 when it was shown that vaccinia, the smallpox vaccine virus, was serologically related but different from the cowpox virus. In the absence of a known natural host, vaccinia has been considered to be a laboratory virus that may have originated from mutational or recombinational events involving cowpox virus, variola viruses or some unknown ancestral Orthopoxvirus. A favorite candidate for a vaccinia ancestor has been the horsepox virus. Edward Jenner himself suspected that cowpox derived from horsepox and he also believed that “matter” obtained from either disease could be used as preventative of smallpox. During the 19th century, inoculation with cowpox (vaccination) was used in Europe alongside with inoculation with horsepox (equination) to prevent smallpox. Vaccine-manufacturing practices during the 19th century may have resulted in the use of virus mixtures, leading to different genetic modifications that resulted in present-day vaccinia strains. Horsepox, a disease previously reported only in Europe, has been disappearing on that continent since the beginning of the 20th century and now seems to have become extinct, although the virus perhaps remains circulating in an unknown reservoir. Genomic sequencing of a horsepox virus isolated in Mongolia in 1976 indicated that, while closely related to vaccinia, this horsepox virus contained additional, potentially ancestral sequences absent in vaccinia. Recent genetic analyses of extant vaccinia viruses have revealed that some strains contain ancestral horsepox virus genes or are phylogenetically related to horsepox virus. We have recently reported that a commercially produced smallpox vaccine, manufactured in the United States in 1902, is genetically highly similar to horsepox virus, providing a missing link in this 200-year-old mystery

    Infektionen des Menschen mit Affenpocken

    No full text

    Berlin Squirrelpox Virus, a New Poxvirus in Red Squirrels, Berlin, Germany

    Get PDF
    Near Berlin, Germany, several juvenile red squirrels (Sciurus vulgaris) were found with moist, crusty skin lesions. Histology, electron microscopy, and cell culture isolation revealed an orthopoxvirus-like infection. Subsequent PCR and genome analysis identified a new poxvirus (Berlin squirrelpox virus) that could not be assigned to any known poxvirus genera

    External quality assessment study for ebolavirus PCR-diagnostic promotes international preparedness during the 2014 – 2016 Ebola outbreak in West Africa

    Get PDF
    During the recent Ebola outbreak in West Africa several international mobile laboratories were deployed to the mainly affected countries Guinea, Sierra Leone and Liberia to provide ebolavirus diagnostic capacity. Additionally, imported cases and small outbreaks in other countries required global preparedness for Ebola diagnostics. Detection of viral RNA by reverse transcription polymerase chain reaction has proven effective for diagnosis of ebolavirus disease and several assays are available. However, reliability of these assays is largely unknown and requires serious evaluation. Therefore, a proficiency test panel of 11 samples was generated and distributed on a global scale. Panels were analyzed by 83 expert laboratories and 106 data sets were returned. From these 78 results were rated optimal and 3 acceptable, 25 indicated need for improvement. While performance of the laboratories deployed to West Africa was superior to the overall performance there was no significant difference between the different assays applied

    Resource-efficient internally controlled in-house real-time PCR detection of SARS-CoV-2

    Get PDF
    Background The reliable detection of SARS-CoV-2 has become one of the most important contributions to COVID-19 crisis management. With the publication of the first sequences of SARS-CoV-2, several diagnostic PCR assays have been developed and published. In addition to in-house assays the market was flooded with numerous commercially available ready-to-use PCR kits, with both approaches showing alarming shortages in reagent supply. Aim Here we present a resource-efficient in-house protocol for the PCR detection of SARS- CoV-2 RNA in patient specimens (RKI/ZBS1 SARS-CoV-2 protocol). Methods Two duplex one-step real-time RT-PCR assays are run simultaneously and provide information on two different SARS-CoV-2 genomic regions. Each one is duplexed with a control that either indicates potential PCR inhibition or proves the successful extraction of nucleic acid from the clinical specimen. Results Limit of RNA detection for both SARS-CoV-2 assays is below 10 genomes per reaction. The protocol enables testing specimens in duplicate across the two different SARS-CoV-2 PCR assays, saving reagents by increasing testing capacity. The protocol can be run on various PCR cyclers with several PCR master mix kits. Conclusion The presented RKI/ZBS1 SARS-CoV-2 protocol represents a cost-effective alternative in times of shortages when commercially available ready-to-use kits may not be available or affordable.Peer Reviewe
    corecore