119 research outputs found

    Identification and characterization of radioactive particles in the environment

    Get PDF
    Radioactive particles have been released into the environment from different sources (e.g. nuclear weapon tests, nuclear accidents, nuclear reprocessing plants, and use of depleted uranium (DU) munitions). Nuclear fuel particles have been released from authorised discharges of low-level radioactive effluent into the Irish Sea sediments from the nuclear fuel reprocessing plant at Sellafield, UK. Following the use of depleted uranium munitions in the Gulf wars and the Balkan conflicts, the environmental impact of depleted uranium and its behaviour in the environment have been of great concern. In this thesis, nuclear fuel particles released from Sellafield and retained in the intertidal Irish Sea salt marsh sediments, and DU particles arising from testing of DU munitions against hard targets and corrosion of DU metal buried in soil at Eskmeals firing range, UK, were investigated using a range of microanalytical, analytical and radiometric techniques. The particles were characterised in terms of size and morphology, elemental and radionuclide compositions, isotopic composition of associated radionuclides and, crystalline structure of uranium forms. The results demonstrate the usefulness of the applied techniques in characterising environmental radioactive particles, and lead to better understanding of the origin, behaviour and fate of these particles in the environment. The nuclear fuel particles were 1-20 µm in size, composed mainly of uranium and irradiated in the reactor as the transuranium elements (Np, Pu, Am and Cm) can be identified. The isotopic composition of uranium and plutonium suggest that these particles are derived from reprocessing of spent fuel. The results demonstrated the persistence for some decades of irradiated fuel particles in estuarine marine environment.DU particles from firing impacts were oxidized uranium forms (UO2 and U3O8) and composed mainly of uranium with few molten particles composed of a mixture of uranium and iron. DU particles from corrosion processes were mainly sand grains coated with metaschoepite corrosion product. The results showed the diversity of particles which can be produced through the use of DU munitions and the potential for these to persist in the environment for many years.EThOS - Electronic Theses Online ServiceUniversity of Aleppo, SyriaGBUnited Kingdo

    Dispersion of U-series natural radionuclides in stream sediments from Edale, UK

    Get PDF
    The spatial distribution of 238U-series radionuclides, specifically 238U, 234U, 230Th and 226Ra, has been determined in stream sediments from Edale, Derbyshire, United Kingdom, to explore the behaviour of U-series radionuclides during weathering.</p

    Cesium and Strontium Contamination of Nuclear Plant Stainless Steel : Implications for Decommissioning and Waste Minimization

    Get PDF
    Stainless steels can become contaminated with radionuclides at nuclear sites. Their disposal as radioactive waste would be costly. If the nature of steel contamination could be understood, effective decontamination strategies could be designed and implemented during nuclear site decommissioning in an effort to release the steels from regulatory control. Here, batch uptake experiments have been used to understand Sr and Cs (fission product radionuclides) uptake onto AISI Type 304 stainless steel under conditions representative of spent nuclear fuel storage (alkaline ponds) and PUREX nuclear fuel reprocessing (HNO3). Solution (ICP-MS) and surface measurements (GD-OES depth profiling, TOF-SIMS, and XPS) and kinetic modeling of Sr and Cs removal from solution were used to characterize their uptake onto the steel and define the chemical composition and structure of the passive layer formed on the steel surfaces. Under passivating conditions (when the steel was exposed to solutions representative of alkaline ponds and 3 and 6 M HNO3), Sr and Cs were maintained at the steel surface by sorption/selective incorporation into the Cr-rich passive film. In 12 M HNO3, corrosion and severe intergranular attack led to Sr diffusion into the passive layer and steel bulk. In HNO3, Sr and Cs accumulation was also commensurate with corrosion product (Fe and Cr) readsorption, and in the 12 M HNO3 system, XPS documented the presence of Sr and Cs chromates.Peer reviewe

    Isotopic and Compositional Variations in Single Nuclear Fuel Pellet Particles Analyzed by Nanoscale Secondary Ion Mass Spectrometry

    Get PDF
    Article published under an ACS AuthorChoice LicenseThe Collaborative Materials Exercise (CMX) is organized by the Nuclear Forensics International Technical Working Group, with the aim of advancing the analytical capabilities of the participating organizations and providing feedback on the best approaches to a nuclear forensic investigation. Here, model nuclear fuel materials from the 5th CMX iteration were analyzed using a NanoSIMS 50L (CAMECA) in order to examine inhomogeneities in the U-235/U-238 ratio and trace element abundance within individual, micrometer scale particles. Two fuel pellets were manufactured for the exercise and labelled CMX-5A and CMX-5B. These pellets were created using different processing techniques, but both had a target enrichment value of U-235/U-238 = 0.01. Particles from these pellets were isolated for isotopic and trace element analysis. Fifteen CMX-5A particles and 20 CMX-5B particles were analyzed, with both sample types displaying inhomogeneities in the U isotopic composition at a sub-micrometer scale within individual particles. Typical particle diameters were similar to 1.5 to 41 mu m for CMX-5A and similar to 1 to 61 mu m for CMX-5B. The CMX-5A particles were shown to be more isotopically homogeneous, with a mean U-235/U-238 atom ratio of 0.0130 +/- 0.0066. The CMX-5B particles showed a predominantly depleted mean U-235/U-238 atom ratio of 0.0063 +/- 0.0094, which is significantly different to the target enrichment value of the pellet and highlights the potential variation of U-235/U-238 in U fuel pellets at the micrometer scale. This study details the successful application of the NanoSIMS 50L in a mock nuclear forensic investigation by optimizing high-resolution imaging for uranium isotopics.Peer reviewe

    Controls on anthropogenic radionuclide distribution in the Sellafield-impacted Eastern Irish Sea

    Get PDF
    Understanding anthropogenic radionuclide biogeochemistry and mobility in natural systems is key to improving the management of radioactively contaminated environments and radioactive wastes. Here, we describe the contemporary depth distribution and phase partitioning of 137Cs, Pu, and 241Am in two sediment cores taken from the Irish Sea (Site 1: the Irish Sea Mudpatch; Site 2: the Esk Estuary). Both sites are located ~10 km from the Sellafield nuclear site. Low-level aqueous radioactive waste has been discharged from the Sellafield site into the Irish Sea for >50 y. We compare the depth distribution of the radionuclides at each site to trends in sediment and porewater redox chemistry, using trace element abundance, microbial ecology, and sequential extractions, to better understand the relative importance of sediment biogeochemistry vs. physical controls on radionuclide distribution/post-depositional mobility in the sediments. We highlight that the distribution of 137Cs, Pu, and 241Am at both sites is largely controlled by physical mixing of the sediments, physical transport processes, and sediment accumulation. Interestingly, at the Esk Estuary, microbially-mediated redox processes (considered for Pu) do not appear to offer significant controls on Pu distribution, even over decadal timescales. We also highlight that the Irish Sea Mudpatch likely still acts as a source of historical pollution to other areas in the Irish Sea, despite ever decreasing levels of waste output from the Sellafield site.Peer reviewe

    Plutonium Migration during the Leaching of Cemented Radioactive Waste Sludges

    Get PDF
    One of the most challenging components of the UK nuclear legacy is Magnox sludge, arising from the corrosion of Mg alloy-clad irradiated metallic U fuel that has been stored in high pH ponds. The sludges mainly comprise Mg hydroxide and carbonate phases, contaminated with fission products and actinides, including Pu. Cementation and deep geological disposal is one option for the long-term management of this material, but there is a need to understand how Pu may be leached from the waste, if it is exposed to groundwater. Here, we show that cemented Mg(OH)2 powder prepared with Pu(IV)aq is altered on contact with water to produce a visibly altered ‘leached zone’, which penetrates several hundred microns into the sample. In turn, this zone shows slow leaching of Pu, with long-term leaching rates between 1.8–4.4 × 10−5% of total Pu per day. Synchrotron micro-focus X-ray fluorescence mapping identified decreased Pu concentration within the ‘leached zone’. A comparison of micro-focus X-ray absorption spectroscopy (µ-XAS) spectra collected across both leached and unleached samples showed little variation, and indicated that Pu was present in a similar oxidation state and coordination environment. Fitting of the XANES spectra between single oxidation state standards and EXAFS modeling showed that Pu was present as a mixture of Pu(IV) and Pu(V). The change in Pu oxidation from the stock solution suggests that partial Pu oxidation occurred during sample ageing. Similarity in the XAS spectra from all samples, with different local chemistries, indicated that the Pu oxidation state was not perturbed by macro-scale variations in cement chemistry, surface oxidation, sample aging, or the leaching treatment. These experiments have demonstrated the potential for leaching of Pu from cementitious waste forms, and its underlying significance requires further investigation

    Plutonium Migration during the Leaching of Cemented Radioactive Waste Sludges

    Get PDF
    One of the most challenging components of the UK nuclear legacy is Magnox sludge, arising from the corrosion of Mg alloy-clad irradiated metallic U fuel that has been stored in high pH ponds. The sludges mainly comprise Mg hydroxide and carbonate phases, contaminated with fission products and actinides, including Pu. Cementation and deep geological disposal is one option for the long-term management of this material, but there is a need to understand how Pu may be leached from the waste, if it is exposed to groundwater. Here, we show that cemented Mg(OH)2 powder prepared with Pu(IV)aq is altered on contact with water to produce a visibly altered ‘leached zone’, which penetrates several hundred microns into the sample. In turn, this zone shows slow leaching of Pu, with long-term leaching rates between 1.8–4.4 × 10−5% of total Pu per day. Synchrotron micro-focus X-ray fluorescence mapping identified decreased Pu concentration within the ‘leached zone’. A comparison of micro-focus X-ray absorption spectroscopy (µ-XAS) spectra collected across both leached and unleached samples showed little variation, and indicated that Pu was present in a similar oxidation state and coordination environment. Fitting of the XANES spectra between single oxidation state standards and EXAFS modeling showed that Pu was present as a mixture of Pu(IV) and Pu(V). The change in Pu oxidation from the stock solution suggests that partial Pu oxidation occurred during sample ageing. Similarity in the XAS spectra from all samples, with different local chemistries, indicated that the Pu oxidation state was not perturbed by macro-scale variations in cement chemistry, surface oxidation, sample aging, or the leaching treatment. These experiments have demonstrated the potential for leaching of Pu from cementitious waste forms, and its underlying significance requires further investigation
    • …
    corecore