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Abstract  

Radioactive particles have been released into the environment from different sources (e.g. 
nuclear weapon tests, nuclear accidents, nuclear reprocessing plants, and use of depleted 
uranium (DU) munitions). Nuclear fuel particles have been released from authorised 
discharges of low-level radioactive effluent into the Irish Sea sediments from the nuclear 
fuel reprocessing plant at Sellafield, UK. Following the use of depleted uranium munitions 
in the Gulf wars and the Balkan conflicts, the environmental impact of depleted uranium 
and its behaviour in the environment have been of great concern.  
 

In this thesis, nuclear fuel particles released from Sellafield and retained in the intertidal  
Irish Sea salt marsh sediments, and DU particles arising from testing of DU munitions 
against hard targets and corrosion of DU metal buried in soil at Eskmeals firing range, UK, 
were investigated using a range of microanalytical, analytical and radiometric techniques. 
The particles were characterised in terms of size and morphology, elemental and 
radionuclide compositions, isotopic composition of associated radionuclides and, 
crystalline structure of uranium forms. The results demonstrate the usefulness of the 
applied techniques in characterising environmental radioactive particles, and lead to better 
understanding of the origin, behaviour and fate of these particles in the environment.  
 
The nuclear fuel particles were 1-20 µm in size, composed mainly of uranium and 
irradiated in the reactor as the transuranium elements (Np, Pu, Am and Cm) can be 
identified. The isotopic composition of uranium and plutonium suggest that these particles 
are derived from reprocessing of spent fuel. The results demonstrated the persistence for 
some decades of irradiated fuel particles in estuarine marine environment. 
 
DU particles from firing impacts were oxidized uranium forms (UO2 and U3O8) and 
composed mainly of uranium with few molten particles composed of a mixture of uranium 
and iron. DU particles from corrosion processes were mainly sand grains coated with 
metaschoepite corrosion product. The results showed the diversity of particles which can 
be produced through the use of DU munitions and the potential for these to persist in the 
environment for many years. 
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Thesis structure 

 

This thesis has been written in a series of standalone but related studies, centred around the 

identification and characterization of radioactive particles in the environment. One part has 

already been published in the proceedings of the Actinides 2009 conference, another has 

been published in the leading journal in the field, a third is in review, while the fourth is 

close to submission. This therefore lends itself to presentation of the thesis in alternative 

format. The structure is outlined below.  

 

Chapter one will review the literature on the different sources contributing to 

environmental radioactivity (e.g. nuclear weapon tests, discharges from nuclear 

reprocessing plant, use of depleted uranium munitions), and characterization of radioactive 

particles in the environment. 

 

Chapter two describes characterisation of radioactive particles in salt marsh sediment. The 

particles are derived from the authorized low-level radioactive effluent discharged from 

Sellafield nuclear reprocessing plant, and transported to the Esk estuary, where they retain 

in salt marsh sediment.  The particles were characterized in terms of size, shape, elemental 

and radionuclide compositions. This chapter has been published in the Actinides 2009 

proceedings.  

 

Chapter three talks about wide range of techniques used to characterize depleted uranium 

particles from test-firing and corrosion of depleted uranium penetrators at Eskmeals 

terrestrial environment. This chapter has been submitted to the journal Science of the Total 

Environment.  

 

Chapter four describes the application of secondary ion mass spectrometry (SIMS), in 

investigating depleted uranium particles from firing impacts. This chapter is in the process 

of being submitted to the Journal of Analytical Atomic Spectrometry. 

 

Chapter five is a collaborative study, which was carried out by a team from the University 

of Plymouth and University of Manchester. It details experiments that were carried out 

investigating depleted uranium corrosion under realistic subsurface soil environments. This 

chapter has been published in the journal Environmental Science and Technology.  
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Finally, the last chapter will draw the various conclusions from earlier chapters and looks 

at future work that could be carried out to develop and apply more methods for 

characterizing radioactive particles in the environment.  
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Introduction 

 

Since the start of industrial nuclear operations, anthropogenic radionuclides have been 

released into the environment from various sources (e.g. nuclear weapon tests, nuclear fuel 

cycle and use of depleted uranium munitions). The main contributor to both marine and 

terrestrial radioactivity is global fallout from nuclear weapon tests performed in the 

atmosphere, especially in the 1950s and 1960s (Livingston and Povinec, 2000).  The 

nuclear fuel cycle contributes to releases mainly at the stages of uranium mining and 

milling and nuclear fuel reprocessing (MacKenzie, 2000). Application and testing of 

depleted uranium munitions has led to the release of depleted uranium into the 

environment at numerous sites around the world. A large fraction of the radionuclides 

released from nuclear events becomes associated with radioactive particles. Such 

radioactive or ‘hot’ particles are localized aggregations of radioactive atoms larger than ca. 

0.5 µm that give rise to an inhomogeneous distribution of radionuclides significantly 

different from that in the background matrix (Salbu, 2000; TÖrÖk et al 2004). They are 

formed through critical or subcritical destruction of radioactive material (e.g. explosion, 

fire, corrosion processes), and by clustering, condensation, or interactions of radionuclides 

with reactive particle surfaces during release and dispersion (Salbu, 2000). Radioactive 

particles enter the environment from different sources, and the behaviour and impact of 

these particles in the environment is related to their physicochemical forms and weathering 

effects. This chapter will review all sources of radioactive particles in the environment, 

focusing on actinide-containing particles derived from reprocessing of nuclear fuel and use 

of depleted uranium munitions which were of interest in this thesis.  

 

1. Sources of environmental radioactive particles 

1.1. Nuclear weapon tests 

The main contribution to artificial environmental radioactivity is the testing of nuclear 

weapons in the atmosphere, from 1945 to 1980. Each nuclear test resulted in uncontrolled 

release into the environment of substantial quantities of radioactive materials, which were 

widely dispersed in the atmosphere and deposited on the Earth’s surface (UNSCEAR, 

2000). 

 
Focusing on actinides, fallout from more than 2300 atmospheric, surface, underground and 

underwater nuclear weapon tests is the major global source of radioactive contamination 
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(UNSCEAR, 1993). Atmospheric nuclear weapons tests conducted from 1945 until 1980 

are responsible for the majority of actinide deposition onto the Earth’s surface (Pentreath, 

1995). During a nuclear explosion a large amount of unfissioned uranium and/or plutonium 

is dispersed, with a consequent release of radioactivity into the atmosphere. It has been 

estimated that about 1.1 x 1016 Bq of 239+240Pu have been globally released from 

atmospheric nuclear testing, mainly from explosions of megaton-range weapons that took 

place before 1963 (UNSCEAR, 2000). During the late 1950s and 1960s, radioactive 

particles were observed at different test sites (Crocker et al., 1966).  

 

Marshall Islands (1946-1958): During the period from 30th June 1946 to 18th August 

1958, the US conducted 67 atmospheric and ground-surface nuclear tests in the Marshall 

Islands (UNSCEAR, 2000). Following the nuclear weapon tests at Bikini and Enewetak 

atolls and the Marshall Islands, hot spots or localized heterogeneities in soils have been 

identified (Eriksson et al., 2005). Based on microanalytical and X-ray techniques, µm-sized 

particles, composed mainly of Pu, with a 240Pu/239Pu atom ratio less than 0.065, 

corresponding to weapons-grade plutonium, have been identified in Runit Island soil 

(Jernstrom et al., 2006). Particle characteristics (size, shape, and colour) depend on devices 

and shot conditions (Crocker et al., 1966).  

 

Nevada test site (1951-1962): At the Nevada test site, USA, 84 atmospheric and surface 

ground weapon tests and more than 900 underground tests were conducted during 1951-

1962 (Salbu, 2008). Following these tests, radioactive particles have been isolated from 

topsoil samples and characterized using microanalytical and X-ray techniques (Faber and 

Landingham, 1977). The particle size distribution was also reported to be dependent on 

device and shot conditions. Shots at high altitude resulted in spherical, small, dense 

particles with high activity, while shots at low altitude and ground level gave larger, 

spherical (Figure 1), and irregular shaped particles with low density and low activities 

(Crocker et al., 1966).   
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Figure 1. A radioactive fallout particle from a tower shot in Nevada. The particle has a dull 

metallic lustre and shows numerous adhering small particles (Crocker et al., 1966).  

 

Maralinga, Australia  (1953-1963): At the Maralinga and Emu sites, Southern Australia, 

nine nuclear weapon tests and several hundred smaller-scale weapon trials were conducted 

by the UK during 1953-1963. The largest and most significant area of contamination, 

resulted from the 12 hydronuclear experiments conducted at Maralinga from 1960 to 1963, 

in which 22.2 kg of uranium and 47.3 kg of plutonium were dispersed. Particles up to 

several hundred µm in size, composed mainly of plutonium, homogenously distributed 

across the particles surface, were observed (Cooper et al., 1994; Burns et al., 1995).   

 

Semipalatinsk, Kazakhstan (1949-1989): At Semipalatinsk, nuclear weapon tests were 

performed mainly in the atmosphere. Subsequently, after the signing of the 1963 treaty 

banning nuclear weapon tests in the atmosphere, in outer space and under water, only 

underground tests were conducted at Semipalatinsk. Nuclear tests at the site ceased in 

1989. A total of 456 nuclear tests were conducted at the site with the total energy released 

being 17.4 Mt of TNT equivalent (IAEA, 1998). Following such nuclear weapon tests, 

relatively large radioactive particles (several hundred µm) containing Pu and U were 

identified at the ground surface. Pu associated with particles or fragments, with activity 

levels exceeding 50 kBq kg-1, has been reported (Salbu, 2008). 

 

Mururoa and Fangataufa, French Polynesia (1966-1996): Most of the tests were 

conducted at Mururoa, the larger of the two atolls, although the larger tests were generally 

conducted at Fangataufa. 41 atmospheric and 137 underground nuclear weapon tests and 
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15 surface and underground trials using conventional explosives were conducted during 

1966-1996. Most of the atmospheric tests were done by hanging the device from a balloon 

at a considerable elevation above the ground. The majority of underground tests were 

performed with devices lowered into holes drilled into the rock beneath either the rim or 

the lagoon of the atolls (IAEA, 2010). Following the nuclear weapon tests and particularly 

weapon trials, radioactive particles up to several hundred µm in size, with activities 

typically 5-30 kBq but up to 1MBq, were identified (Bleise et al., 2003). 

 

Novaya Zemlya (1950s-1990): At Novaya Zemlya, about 130 atmospheric, underground 

and underwater nuclear weapon tests were carried out during 1950-1990. Significant 

contamination, hot spots and localized heterogeneities were observed within the three 

major test sites, and could be attributed to specific shot scenarios (Salbu, 2000). In 

particular, in Chyornaya Guba, where underwater weapons tests took place in 1955, 1957 

and 1961, localized heterogeneities of radionuclides in sediments indicate the presence of 

radioactive particles (Salbu, 2008).       

 

1.2 Accidents with nuclear devices   
 
Palomares, Spain (1966): On 17 January 1966, a B-52 bomber aircraft caught fire at an 

altitude of 8500 m above the village of Palomares. Two of the bombs detonated 

conventionally upon impact on land. The explosion and subsequent fire caused the 

dispersion of particles containing Pu and U over a terrestrial area of about 2.3 km2 situated 

close to the Mediterranean (Jimenez-Ramoz, 2006). The particles contained a mixture of 

enriched uranium and weapon-grade plutonium material (Lind et al., 2007).  

 

Thule, Greenland (1968): In January 1968, a B-52 bomber from the US Strategic Air 

Command carrying four nuclear weapons, caught fire and crashed on the sea ice on Bylot 

Sound, about 12 km off the Thule Air Base in northwest Greenland (Moring et al., 2001). 

As a result, particles containing Pu and U were dispersed in sediments at the point of 

impact (Eriksson et al., 2005).  

 

1.3 Nuclear accidents  

Windscale, Sellafield UK: During the early 1950s, about 20 kg of uranium were released 

to the atmosphere from one of the two air-cooled, graphite-moderated uranium metal 

reactors operating at Windscale, UK, from 1951 to 1957 (Salbu, 2000). Due to corrosion of 

spent fuel elements misplaced in the air duct leading to the discharge stack, and inefficient 
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filtering, fuel particles up to 700 µm in size were deposited in the region (Salbu et al., 

1998). The release of irradiated nuclear fuel particles from Windscale was reviewed by 

Smith et al. (2007).  

 

Chernobyl accident 1986: In 1986, about 6-8 tonnes of irradiated UO2 fuel were released 

into the atmosphere from the Chernobyl reactor due to the initial explosion and the 

subsequent fire at Unit 4 (Salbu, 2000). About 2 x 1018 Bq of condensable radioactive 

materials were released, the majority of which was deposited in Europe. Large fuel 

particles with variable radionuclide composition deposited within the 30 km zone, while 

small-sized particles were identified up to 2000 km from the site (Devell et al., 1986; 

Kuriny et al., 1993).  Following the high temperature accident, different uranium fuel 

particles were observed, varying in composition, morphology and structure (Salbu et al., 

1998).   

 

1.4 The nuclear fuel cycle and reprocessing in the UK 

The nuclear fuel cycle (Figure 2) is the sequence of processes which involve the production 

of energy from uranium in nuclear reactors. Uranium is widely dispersed and usually found 

in low concentrations. It is mined in a number of countries and needs to be enriched and 

fabricated in order to be used as fuel for nuclear reactors. Spent fuel can be reprocessed to 

produce fresh fuel, after being removed from the reactor. The nuclear fuel cycle starts with 

the mining of uranium and ends with the disposal of nuclear waste. With the reprocessing 

of used fuel as an option for nuclear energy, the stages form a true cycle (WNA, 2010a).  

 

Nuclear fuel reprocessing will be discussed in detail, as a source of radioactive particles 

associated with the low-level radioactive effluent discharged into the sea.  
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Figure 2. Schematic of the nuclear fuel cycle in the UK (NDA, 2007)  

 

1.4.1 Reprocessing of spent nuclear fuel 

An exceptional characteristic of nuclear energy is that used fuel (irradiated nuclear fuel that 

no longer sustains nuclear reactions) can be reprocessed in order to provide fresh fuel for 

nuclear reactors. UK, France, Russia and Japan have a policy to reprocess used nuclear 

fuel. The main reason for reprocessing used fuel has been to recover uranium and 

plutonium for reuse and thus close the fuel cycle, gaining more energy from the original 

uranium in the process (WNA, 2010b). A secondary reason is to condition the waste into 

suitable form for disposal (Wilson, 1995). The composition of spent fuel varies as a 

function of the type of fuel and reactor, neutron spectrum, flux, burn-up and the cooling 

time after removal from the reactor (Choppin et al., 2002). Table 1 shows the typical 

composition of spent nuclear fuel after it has been used in the reactor.  
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Materials  Mass % Radioactivity %  

U 96  0.0001 

Pu 1 2.5 

Fission products  3 97.1 

Minor actinides (Np, Am, Cm) 0.2 0.4 

 

Table 1. Composition of spent nuclear fuel (Wilson, 1995)  

Used fuel assemblies taken from the reactor core are highly radioactive and give off a lot of 

heat. They are therefore stored in special ponds which are usually located at the reactor 

site, to allow both their heat and radioactivity to decrease. The water in the ponds acts as a 

barrier against radiation and disperses the heat from the spent fuel. This storage is intended 

only as an interim step before the spent fuel is either reprocessed or sent to final disposal 

(Lo Frano et al., 2010).  

All currently operating, large scale reprocessing plants use PUREX (plutonium and 

uranium recovery by extraction) process employing a mixture of tri-n-butyl phosphate 

(TBP) in hydrocarbon diluent. This involves dissolving the fuel elements in hot 

concentrated nitric acid and chemical separation of uranium and plutonium is then 

undertaken by solvent extraction (Figure 3). The Pu and U are transferred to the organic 

phase by forming nitrate complexes with TBP, leaving most of the fission products (FPs) 

in the aqueous phase (Mcfarlane, 2004). TBP is a neutral extractant which requires a 

negative counter-ion to allow extraction of metallic cations. Certain oxidation states of 

actinides complex with many ions, but nitrate complexes have proved to be uniquely useful 

for the extraction of U and Pu (Wilson, 1995).     

UO2
2+ + 2NO3

- + 2TBP               UO2(NO3)2.2TBP 

Pu4+ + 4NO3
- + 2TBP              Pu(NO3)4.2TBP 

In the subsequent cycle, U/Pu separation is achieved by back-extracting Pu into the 

aqueous phase by reduction to Pu(III).   
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Figure 3. Reprocessing of spent nuclear fuel 

The remaining liquid after Pu and U are removed is high-level waste, containing about 3% 

by mass of the used fuel in the form of fission products and minor actinides (Np, Am, Cm). 

It is highly radioactive and continues to generate a lot of heat. It is conditioned by 

calcination and incorporation of the dry material into borosilicate glass, then stored 

pending disposal. Fuel reprocessing gives rise to low level radioactive effluent which is 

discharged into the sea or rivers via pipelines. The world’s first plutonium reprocessing 

plant in Hanford (USA) discharged liquid waste via the Columbia River into the Pacific 

Ocean (Poston et al., 2007). The two largest reprocessing facilities in Europe, Sellafield in 

northern England and La Hague in northern France, discharge radioactive waste into the 

Irish Sea and English Channel respectively. Historically, these have represented some of 

the highest radioactive waste discharges into the sea and over 97 percent of all the 

radioactive discharges from all nuclear facilities in Europe.  

European nuclear reprocessing plants: Effluent from the reprocessing plants at Sellafield 

and Dounreay, UK, and La Hague, France, are the major sources of radionuclides entering 

the North Sea, Irish Sea, Norwegian Sea, Barents and Kara Seas. The great majority of 

artificial radionuclides released to the sea originate from Sellafield (Table 2)  

 

Facility Sellafield La Hague Dounreay Total (%) Total Bq 

α – activity 92.5 0.52 1.8 97.5 1.4 x 1015 

 

Table 2. Contribution (%) to the total discharges within the European community made by 

reprocessing plants for discharges up to 1984 (Salbu et al., 2003). 

Aqueous  

Solvent  
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Many radionuclides released into the Irish Sea from the Sellafield plant become associated 

with suspended particles (Kershaw et al., 1986) or are discharged in particulate form 

(Hamilton, 1981). Due to accidental releases via the effluent discharges at Dounreay, 

Scotland, in the 1960s, a number of radioactive particles are annually collected at beaches 

close to the site. The particles are relatively large with high activities (1 x 106 Bq), 

comprise U fuel and contain a series of fission products (Thomson, 2007). 

 

 No information on identification of particles released from La Hague identified in the 

environment is available. However, a major fraction of radionuclides in the effluent from 

La Hague and Sellafield during normal operation is associated with particles and colloids 

which are relatively stable in sea waters (Salbu et al., 1993).  

 

Russian reprocessing plants: The Mayaka Production Association (Mayaka PA) was 

established in the late 1940s to produce Pu for the Soviet nuclear weapons programme. The 

site is located at the head of the Techa River in the southern Urals and comprises military 

reactors (isotope production) and civilian reactors (power) as well as reprocessing and 

metallurgical plants. At Mayaka PA, three major incidents have released radionuclides into 

the environment (Skipperud et al., 2005): 

1- Authorized discharges of liquid radioactive wastes to the Techa River (1949-1951). 

2- The Kyshtym accident releases due to an explosion in a high level radioactive waste 

tank (1957). 

3- Wind transport of contaminated sediments from Lake Karachay (1967)  

 

Between 1949 and 1951, an estimated of 110 x 1015 Bq of beta emitters and 10 x 1012 Bq 

of alpha emitters were released into the Techa River, causing heavy contamination of the 

river and flood points (Skipperud et al., 2005). Radioactive particles containing U and 

heavy metals have been identified in sediments and soils (Salbu, 2005). 

 

1.4.2 Radioactive particles from Sellafield discharges  

The direct discharge of low-level radioactive effluents into the NW Irish Sea from 

Sellafield nuclear fuel reprocessing plant has been a significant flux to the marine 

environment. Discharges of radioactive effluents from Sellafield to the environment have 

gone on since commencement of operations at the site in 1951. Currently, authorisation to 

discharge under the Radioactive Substances Act 1993 is granted by the UK Environment 

Agency (Gray, 1995). After the mid-1960s, the amounts of discharges increased rapidly, 
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peaked in the 1970s and have been decreasing since the 1980s (Kershaw et al., 1995; Gray, 

1995). 

 

Low level liquid effluents arising from a number of sources on the Sellafield site are 

discharged to the Irish Sea via pipelines which extended about 2.5 km from the high water 

mark. As discussed earlier, reprocessing involves separating uranium, plutonium and 

highly radioactive fission products by a series of solvent extraction stages, leaving 

approximately 99% of the fission products concentrated into the aqueous acid effluent 

stream for evaporation and storage (Gray, 1995). As plant feed materials have changed 

during Sellafield’s life time, the elemental and isotopic compositions of the discharge have 

also changed (Gray, 1995). Figure 4 shows Sellafield discharges of plutonium from 1952 

to 2005.  
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Figure 4. Sellafield Discharges of Plutonium (Gray, 1995; BNFL, 2005).  

Because of the need for relatively pure 239Pu for weapons, the fuel rods are removed and 

the plutonium is separated from them after brief irradiation (low burn-up); the resulting 

“weapons grade” plutonium is about 93 atom% 239Pu with low 238Pu content, and this was 

characteristic of early plutonium discharges to the Irish Sea. For power production the fuel 

in the reactor is irradiated much longer (high burn-up), resulting in a mix that includes 
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more of the higher isotopes of plutonium and also a higher proportion of 238Pu. Such 

material is typical of more recent plutonium discharges. 

 

The Sellafield effluent has two sources: pond water, which is discharged continuously, in 

which spent fuel elements are stored prior to reprocessing, and waste arising from a variety 

of processes on site, particularly from fuel reprocessing, which are routed through sea 

tanks and discharged into the sea (Kershaw, 1986). The effluent contains small quantities 

of U and the α-emitting transuranium elements Np, Pu, Am and Cm (Kershaw et al., 1986). 

The interaction of these radionuclides with seawater, suspended particulate matter and 

seabed sediments will be influenced greatly by their chemical and physical forms and 

associations of the radionuclides in the effluent, together with any changes which take 

place upon release to the sea (Kershaw, 1986). The eastern Irish Sea basin is generally 

quite shallow, typically only 30 m deep and, as a result of tidal movement and currents, the 

fine-grained particles with their associated radionuclides are focused into a belt (ca 15 km 

long x 3 km wide) of muds and muddy sediments (the ‘mud patch’) which lies parallel to 

the coast (Mackenzie et al., 1994; Marsden et al., 2006). Onshore transfer of the particles 

has resulted in deposition of radionuclides in intertidal, floodplain and beach environments 

of this area, with highest level of contamination occurring in fine-grained salt marsh and 

estuarine sediments (MacKenzie et al., 1999). In the Esk estuary (south of Sellafield), a 

large proportion of the radionuclides which are retained in sediments, is associated with 

particulate matter (Hamilton and Clarke, 1984).  The significant sources of alpha emitting 

radionuclides in Irish Sea sediments have been classified into three categories. The highest 

level of activity is associated with hot particles, typically less than 20 µm × 50 µm in size, 

found in the Esk estuary sediments, originating from spent nuclear fuel debris from 

Sellafield plant (Hamilton, 1981). The other significant components containing alpha 

emitters are the minerals hematite and magnetite, and hydrated iron oxides, which have 

accumulated radionuclides from the sea water (Hamilton, 1998). The salt marsh sediment 

profiles preserve a record of the Sellafield discharge history (MacKenzie et al., 1994; 

Morris et al., 2000). The 1970s discharges (when the activity discharged was highest) are 

reflected in the 10-15 cm section of the intertidal salt marsh sediments in the Esk estuary 

(Marsden, 2003). In this thesis, nuclear fuel particles derived from 1970s Sellafield 

discharges and retained in Esk estuary salt marsh sediments were investigated.  
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1.4.3 Radioactive particles from Dounreay nuclear site 

The Dounreay nuclear site, located on the north west of Scotland, released unknown 

quantities of irradiated nuclear fuel particles during the late 1950s, 1960s and 1970s. The 

particles were produced during the processing of fuel from the Materials Test Reactor 

(MTR) and Dounreay Fast Reactor (DFR). MTR particles were produced as a result of 

fault conditions during milling and cropping operations, prior to reprocessing, whereas 

DFR particles were most likely produced during combustion incidents in the dissolution 

cycle during reprocessing (Dennis et al., 2007). In 1983, a routine radiological survey on 

the Dounreay beach, using handheld beta-gamma probes, discovered a radioactive particle. 

Analyses showed the particle was a fragment of irradiated MTR fuel. It was composed of 

aluminium and small amount of uranium as well as fission products (Toole, 2007). Since 

the 1983 discovery, routine monitoring for particles has been carried out at selected 

locations distributed over 25 km of coastline, centred on the Dounreay foreshore and 

seabed sediments and the public beaches. A large number of high activity (MBq) particles 

have since been found in the intertidal and marine environment in the vicinity of Dounreay, 

by detecting 137Cs gamma radiation (Crawford et al., 2007; Goss and Liddiard, 2007). In 

August 2008, Dounreay Site Restoration Ltd (DSRL) started to clean up the seabed where 

the most hazardous of these particles are to be found. This continued in the summer of 

2009, when more than a hundred particles were retrieved from the seabed. DSRL regularly 

updates a list of all particles detected around the site (DSRL, 2010).  Figure 5 below shows 

a Dounreay particle. 

 

 

Figure 5. Example of a Dounreay MTR particle.Cs-137 activity ~ 3 x 105 Bq, Spesific 

activity ~2 x 109 Bq g-1(Charles and Harrison, 2007). 
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1.5 Depleted Uranium (DU)  
 
Natural and depleted uranium  
 
Uranium is present in most rocks and soils in concentrations of 2 to 4 ppm and is as 

common in the Earth's crust as tin, tungsten and molybdenum. It is also found in sea water, 

at an average concentration of 1.3 ppb. It occurs as the mixed uranium oxide (U3O8) in 

amorphous (pitchblende), or crystalline forms (uraninite) (Craft et al., 2004). There are a 

number of locations in different parts of the world where it occurs in economically-

recoverable concentrations. Natural uranium is comprised of three main isotopes, 

primordial 238U and 235U, which are parent members of natural radioactive decay series and 
234U, which is a decay product of 238U. The isotope 235U is the only naturally-occurring 

isotope which can sustain a fission chain reaction, releasing large amounts of energy. For 

most of the world's reactors, the next step in making a useable fuel is to convert the 

uranium oxide into a gas, uranium hexafluoride (UF6), which enables it to be enriched. 

Enrichment increases the proportion of the 235U isotope from its natural level of 0.7% to 

about 3 - 5%. The uranium that remains after the enrichment process, commonly called 

depleted uranium (DU), has decreased levels of 235U and 234U, and a slightly increased 

level of 238U  (Table 3). Every tonne of natural uranium produced and enriched for use in a 

nuclear reactor gives about 130 kg of enriched fuel (ca 3.5% 235U). The balance is depleted 

uranium tails (238U, typically with 0.2-0.3% 235U and 0.001% 234U) (WNA, 2009). In 

addition, because some reprocessed uranium is used in the enrichment process, DU may 

also contain small traces of 236U, transuranium nuclides (239+240Pu, 241Am and 237Np) and 

the fission product 99Tc (Nuccetelli et al., 2005). The presence of traces of 236U and 

transuranium radionuclides has been conformed in samples from Kosovo (Danesi et al., 

2003). All three natural isotopes of uranium have long half-lives and natural uranium is 

therefore classified by the International Atomic Energy Agency in the lowest hazard class 

for radioactive materials as a low specific activity material (The Royal Society, 2001).  

DU, although having all the chemical and biological properties of natural uranium, is about 

40% less radioactive than natural uranium. 
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Isotope  Natural U wt % DU wt % Activity  
(Bq/mg natural U) 

Activity  
(Bq/mg DU) 

Half-life (y) 
 

238U 99.28 99.79 12.35 12.41 4.47 x 109 
235U 0.72 0.20 0.57 0.16 7.04 x 108 
234U 0.0054 0.001 12.49 2.31 2.45 x 105 

    U    25.41 14.88  
 

Table 3. Composition and activities of natural and depleted uranium (UNEP, 2003).  

 

The isotopic composition of natural uranium is clearly different from that of depleted 

uranium, and that can be used to identify and quantify DU in environmental samples, by 

measuring the isotopic ratios 235U/238U and 234U/238U, which are indicative of the degree of 

depletion Figure 6.  

 

Figure 6. Isotopic composition of natural U and DU 

 

Physicochemical properties of DU 

DU in the metallic form has a high density of 19.07 g /cm3, i.e., 1.7 times the density of 

lead and its hardness, as well as self-sharpening properties, make it superior to classical 

tungsten armour-piercing munitions (Bem and Bou-Rabee, 2004). When they strike a 

target, tungsten penetrators blunt while DU sharpens itself as it moves through the armour. 

DU metal is pyrophoric (so ignites easily when it fragments), and burns at high 

temperature (600-700 oC) to form a series of oxides such as UO2, UO3 and U3O8 (Harley et 

al., 1999). When a DU round hits a hard target such as armour-plate, some DU aerosolises 

and ignites, generating a cloud of oxidized DU dust and aerosol particles. As a result, DU 
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particles will be dispersed in the vicinity of target area (The Royal Society, 2001). Any 

remaining particles of metallic uranium will oxidize over time due to weathering (UNEP 

2003). On average 10-35% (with a maximum of 70%) of a DU bullet becomes airborne or 

aerosolised on impact and the particles can spread up to 400 m (Nellis, 2006). 

 

Metallic natural uranium and DU, and many of their alloys, are unstable in contact with air 

or water and will readily corrode in the natural environment (i.e. they are 

thermodynamically unstable), giving rise to the formation of corrosion products (typically 

oxides and hydroxides) on the metal surface (Dstl, 2006). 

 

The rate at which they corrode is dependent on particular environment. Reaction rates are 

affected by many factors such as metal/alloy composition, and environmental factors such 

as temperature, pH, humidity, microbial community, gas composition and pressure (Dstl, 

2006; Handley et al., 2008).  

 

Military use of DU  

Gulf war (1991)  

During the first Gulf War (Desert Storm), the first conflict where DU munitions were 

known to be used, about 300 tons of DU was deposited in Kuwait and southern Iraq 

(Figure 7). Most DU (~250 tonnes) was fired from A-10 aircraft as 30 mm rounds (300 g 

DU each), and ~50 tonnes DU was fired from tanks as 120 mm rounds (5 kg each) (Fitter 

and Hippel, 2000; Bleise, 2003). A large fraction of DU bullets (~ 90%) fired from aircraft 

missed their intended targets (Ben and Bou-Rabee, 2004). The majority of these projectiles 

is still buried at various levels in the ground. 

 

Increasing ratio of U(VI) to U(IV) 
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Figure 7. Principal locations of DU munitions use in Iraq and Kuwait (Marshall, 2005). 

 

Bosnia and Herzegovina (1995) 

About 10,800 DU rounds (approximately 3 tonnes of DU) were fired during NATO air 

strikes in Bosnia-Herzegovina in 1994 and 1995, mainly around Sarajevo (Bleise et al., 

2003). The area was exposed to DU dust, which dispersed in the surface soil (0-5 cm), but 

the contamination was quite localized giving widely variable concentrations of 0.01-100 g 

DU/ kg of soil (UNEP, 2003).  

 

Kosovo (1999) 

Beginning on 24 March 1999, NATO aircraft bombarded Yugoslavia for 78 days. In 

particular, US A-10 aircraft used at least 30,000 rounds, corresponding to about 10 tonnes 

of DU, against Serbian tanks in Kosovo. A total of 112 sites in and close to the border of 

Kosovo were hit with DU munitions (Bleise et al., 2003). The majority of these rounds 

missed their targets and remain buried in the ground at depths that make them very difficult 

to recover (McLaughlin et al., 2003). 

 

The aircraft-fired DU rounds employed have a length of 173 mm and a diameter of 30 mm 

and contain a conical DU penetrator, 95 mm in length and with a base diameter of 16mm, 

weighing 300 g. The penetrator is fixed in an aluminium jacket 60 mm long and 30 mm in 

width (Figure 8). When the penetrator hits an armoured vehicle, the penetrator continues 

through the armouring, but the jacket usually remains outside. 

 

200 km 
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Figure 8. DU round fired in Kosovo (UNEP, 2001) 
 

 

DU in surface and subsurface soils 

DU munitions deposited during military activities consist mainly of whole penetrators and 

large fragments, since 70–90% of penetrators fired from aircraft miss their targets (Mellini 

and Riccobono, 2005); and a penetrator that hits its target will normally lose 10–35% and 

up to 70 % of its mass (Papastefanou, 2002). Most dust particles formed are smaller than 5 

micrometers in size and, when released into the atmosphere, spread according to wind 

direction. By sedimentation, DU particles are deposited on the ground and other surfaces. 

Pieces or fragments of metallic DU can also be formed and scattered around (The Royal 

Society, 2002; UNEP, 2003). Over time, these will be gradually transported down into the 

upper soil layer, mostly through physical turnover (UNEP, 2003).  

 

Since about 70% of DU penetrators miss their target, a significant amount of DU will be 

buried in the ground. Most penetrators hitting soft ground will probably penetrate intact 

more than 50 cm into the ground and remain there for a long period of time, depending on 

the weathering/ geochemical conditions (The Royal Society, 2002). Uranium metal is 

unstable in the natural environment, so corrosion products (e.g. schoepite, metaschoepite) 

will form on the metal surface. The maximum solubility of oxidized uranium phases 

forming surface layers on penetrators (e.g. schoepite) at near-neutral pH is about 10 ppm 

(UNEP, 2003). As the uranium metal oxidizes, the soils and rocks will initially contain 

elevated concentrations of corroding uranium rather than solid uranium metal. With time, 

the corroding uranium will dissolve and uranium will move downward through the soil as 

Propellant Charge 
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mobile UO2
2+.Through the dissolution of corrosion products, UO2

2+ can be transported to 

deeper ground layers and may reach the ground water (Mellini and Riccobono, 2005).  

 

 Environmental and health impacts of DU 

The use and testing of DU munitions has led to the release of DU into the environment at 

several locations around the world. There are two types of environmental impact of DU: 

(1) Firing impact, arising when a DU penetrator hits a hard target and DU aerosol particles 

and fragments are deposited in the vicinity; (2) Corrosion impact: when DU penetrators 

miss their target and embed in the ground, corrosion products will be formed and 

distributed in the surrounding soils. Concerns arise from both as DU is chemically toxic 

and weakly radioactive. Its use on the battlefield can lead to it being spread over a wide 

area, with potentially hazardous consequences for both military and civilian populations 

and for the environment generally (The Royal Society, 2001; Bailey et al., 2002). The three 

main routes of human exposure to DU on the battlefield are inhalation, ingestion and 

wounding. The greatest exposure to radiation resulting from inhaled DU particles will be to 

the lungs and associated lymph nodes, and an increased risk of lung cancer is considered to 

be the main radiation risk (Bailey et al., 2002). Any health effects will depend critically on 

the particle size and chemical nature of the inhaled aerosol.  

 

With time, chemical weathering will cause corrosion of metallic DU in the ground, 

dispersion in the soil and, after slow oxidation, transformation into soluble chemical forms. 

Finally after migration to the surface and underground water it will eventually be 

incorporated into the food chain. Therefore, people can be exposed to the released DU in a 

number of ways. These include external exposure to the radiation emitted from uranium, 

the inhalation of DU particles mainly during the war period and the ingestion of 

contaminated water or food after the end of war (Papastefanou, 2002; DoD, 1998).  

 

1.2 Characterization of radioactive particles   

In the majority of the above mentioned release scenarios, the radioactive material is 

dispersed into the environment as discrete particles. Therefore, it is very important to study 

the behaviour of these radioactive particles in the environment in terms of mobility, 

weathering and corrosion rates. To understand environmental behaviour, detailed 

information is required on particle characteristics such as size, morphology, and elemental 

composition which influence the particle weathering, as well as crystal structure and 

oxidation states of elements contained in the particle, which influence corrosion and 

mobility (Salbu et al.,1998). The isotopic composition of uranium and plutonium contained 
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in the particles reflect the properties and history of the source material and provide detailed 

information on origin of radioactive particles (Jambers et al., 1995). Overall understanding 

of the environmental behavior of radioactive particles and related physicochemical 

processes are key factors in the assessment of their environmental impact and the fate of U 

and Pu present in the environment in the form of hot particles. Therefore, radioactive 

particles incorporated in the low-level effluent discharged from Sellafield into the Irish Sea 

and retained in salt marsh sediments, and depleted uranium particles produced through test-

firing of DU pentrators against hard targets and corrosion of unfired DU metal in soils, 

were investigated in this study. A wide range of characterization techniques will be used to 

obtain information on these particles (Table 1). The experimental techniques used in this 

study are explained in Appendix A. 

 

Method Information  

Autoradiography  Localization of radioactive particles in soil in order to isolate 

them for further analysis.   

Density separation  Separation of radioactive particles (dense particles) from soil 

matrix 

SEM-EDX Size and morphology of the particles and surface elemental 

composition.  

XRD Crystal structure of uranium phases in the particles  

Alpha spectrometry  Measuring the activity ratios 234U/238U and 238Pu/239+240Pu to get 
information on particle origin 

ICP-MS Measuring the atom ratio 235U/238U to quantify DU in 

environmental samples.  

ICP-AES Quantifying elemental composition to get information on 

associated elements and environmental behavior.  

SIMS Surface chemistry of the particle and measuring the isotopic 

composition of uranium to obtain information on the origin of 

starting and associated elements and their correlations.  

Table 4. Experimental and analytical techniques used to identify and characterize 

environmental radioactive particles in this study.  

 

In this thesis, the techniques listed above will be applied to identification and 

characterization of environmental radioactive particles to obtain information which will 

help in understanding environmental behaviour, determining origins, predicting fate, and 

assessing environmental impact.   
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Abstract. Radionuclides from authorized low level radioactive effluent 

discharges from the nuclear fuel reprocessing plant at Sellafield, UK, are 

present in the Irish Sea sediments. The distribution of radionuclides in salt 

marsh sediment profiles can be related to the discharge history from 

Sellafield. Radioactive particles, from the intertidal salt marsh sediments in 

the Esk estuary (10 km from Sellafield), have been isolated and 

investigated. Autoradiography and heavy liquid density separation were 

used to find and isolate these particles. Scanning electron microscopy, 

combined with energy dispersive X-ray analysis (SEM-EDX), was used to 

obtain information on the morphology and elemental composition of the 

particles, and alpha spectrometry for radionuclide composition. Particles are 

typically 1 - 20 µm size. Elemental analysis suggests that they are composed 

mainly of uranium. Alpha spectrometry shows that they have been 

irradiated, and transuranium nuclides (Pu, Am, Cm) can be identified in 

them. 

1.  Introduction  
Low-level radioactive effluents have been discharged under authorization since 1952, into 

the Irish Sea from the UK nuclear fuel reprocessing plant at Sellafield, UK. The Sellafield 

effluent has two sources: pond water, which is discharged continuously, in which spent 

fuel elements are stored prior to reprocessing, and waste arising from a variety of processes 

on site, particularly from fuel reprocessing, which are routed through sea tanks and 

discharged into the sea. The effluent contains small quantities of U and the α-emitting 

transuranium elements Np, Pu, Am and Cm [1]. The interaction of these radionuclides with 

seawater, suspended particulate matter and seabed sediments will be influenced greatly by 
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the chemical and physical forms and associations of the radionuclides in the effluent, 

together with any changes which take place upon release to the sea [1]. The environmental 

behaviour of radionuclides associated with radioactive particles may differ considerably 

from that of radionuclides adsorbed reversibly onto solid surfaces, for example of sediment 

grains, or associated with organic matter. Thus the occurrence and persistence of 

radioactive particles in the Irish Sea could have important implications for the radiological 

assessment of the releases and ultimate fate of the radionuclides [1]. The eastern Irish Sea 

basin is generally quite shallow, typically only 30 m deep and, as a result of tidal 

movement and currents, the fine-grained particles with their associated radionuclides are 

focused into a belt (ca 15 km long x 3 km wide) of muds and muddy sediments (the ‘mud 

patch’) which lies parallel to the coast [2, 3]. With time, some of the particulates have been 

redistributed by tidal processes or storm events and deposited in the intertidal areas of local 

estuaries. The finest sediments settle in the areas of low tidal and wave energy, and are 

typically found in estuarine salt marshes (where vegetation is an efficient trap for fine 

suspended particles), for example those of the river Esk. Continuation of these processes 

will result in an increase in radionuclide inventories in salt marsh sediments [2]. The 

significant sources of alpha emitting radionuclides in Irish Sea sediments have been 

classified into three categories [4]. The highest level of activity is associated with hot 

particles, typically less than 20 µm × 50 µm in size, found in the Esk estuary sediments, 

originating from spent nuclear fuel debris from Sellafield plant, but these particles have not 

been fully characterized [5]. The other significant components containing alpha emitters 

are the minerals hematite and magnetite and hydrated iron oxides [4]. It was observed that 

the salt marsh sediment profile preserve a record of the Sellafield discharge history. 

The1970s discharges (when the discharges were maximum) are reflected in the 10-15 cm 

sections of the intertidal salt marsh sediments in the Esk estuary (Figure 1).  

 
 

Figure 1. Salt marsh sediment profile and Sellafield discharge of 241Pu from [6]. 
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In this study, radioactive particles from the intertidal salt marsh sediments have been 

identified and characterized. Particle characteristics produce information on the origin as 

well as the environmental pathways related to the history of the particle. Characteristics of 

environmental radioactive particles, i.e. atom/activity ratios, are related to the origin, 

whereas properties such as size distribution, shape, crystalline structures, and oxidation 

states of matrix elements depend on the specific conditions of release [7]. Isotopic ratios, as 

well as elemental distribution in a particle, act as a fingerprint for distinguishing particles 

from different sources. Analysis of actinide-containing microparticles traditionally consists 

of search and localization, followed by determination of the phase, general elemental, and 

isotopic composition, as well as the size and shape of the microparticles. This allows 

prediction of their fate, i.e., mobility and chemical stability, as well as bioavailability under 

various conditions [8]. Complex examinations of this kind typically use a combination of 

different microanalytical methods, such as electron microscopy and X-ray analysis [9]. 

2.  Methods and analysis 

2.1.  Study site and sample collection  

The study area is illustrated in Figure 2. It shows the Esk estuary salt marsh, where 

sediment sample was collected on 19 March 2008 at low water (detailed site map and 

sample collection site are presented in supporting information, Figure S1). The sediment 

core sample (30 cm depth, approximate age range 1950 to present) was sampled by digging 

and divided into 6 sections (5 cm thick). The 10-15 cm section was analysed in this study, 

since it is expected to contain radioactive particles deposited from 1970s Sellafield 

discharges. The other sediment core sections will be investigated later. A block of the 10-

15 cm wet sediment section was cut off and hand-ground to small pieces, left to dry and 

gently ground using a mortar and pestle to obtain a uniform soil sample (particle size < 200 

µm). 
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Figure 2. UK map (left), enlargement for Cumbria (top right), and the salt marsh study site 
(right). 

2.2.  Analysis  

2.2.1.  Autoradiography. Storage phosphor autoradiography was used to localize radioactive particles 

in the sediment samples, by placing the phosphor screen (25 x 20 cm) on the sample (dry sediment 

placed on small filter papers placed on a flat paper) for suitable time and then scanning the screen 

with laser light using a Typhoon phosphor imager to obtain an image (autoradiograph) of the sample, 

which maps out the distribution of radioactive particles in the sample (Figure 3). 
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Figure 3. Left: autoradiograph of radioactive particles. The red spots represent radioactive particles 
in the sample.Right: photostimulable luminescence (PSL) signal for the three red spots.  
 

The other advantage of the technique is that it gives indication of particle activity. The 

three numbered red spots which have different intensites give different PSL signals which 

are proportional to the particle activities. These radioactive particles are very difficult to 

distinguish from fine sediment grains (Figure 4). To isolate the radioactive particles from 

1 
 

2 3 
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the sediment matrix, heavy liquid density separation was used. Uranium oxide particles 

with a density of about 10 g/cm3 are much denser than the sediment matrix (~ 2.5 g / cm3). 

Separation can be achieved using a heavy liquid with density greater than 2.5 g / cm3.  

 
 

Figure 4. Sediment particles on a filter paper. (one division on the scale = 20 µm). 

2.2.2.  Heavy liquid density separation. In this study, LST fast float heavy liquid 

(concentrated solution of lithium hetropolytungstate, density 2.83 g/cm3) was used. Heavy 

liquid separations are generally done in a separating funnel (Figure 5). The material is 

transferred from a filter paper into the separating funnel and the heavy liquid is added.  The 

funnel is then shaken to disperse the particles and left to permit light particles to float and 

heavy particles to sink (when density differences or particle sizes are small, heavy liquid 

separation can take many hours). When the particles have been separated, the separating 

funnel is opened and the heavier particles are transferred (in ~1ml heavy liquid) into a 10 ml 

plastic vial, then washed with deionized water and filtered using a nitrocellulose membrane. 

The particles are left to dry for further analysis (Figure 5). 

 

 

 
Figure 5. Left: heavy liquid density separation with heavy particles in the bottom and sediment 

floating on top. Right: an optical microscope image of the heavy particles on a nitrocellulose 

membrane (one division on the scale = 20 µm).  
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2.2.3.  Scanning electron microscopy (SEM) – Energy dispersive X-ray analysis (EDX). 

Electron microscopy and X-ray analysis are very useful in characterizing microparticles, 

providing information on morphology (topographic images and size) and surface elemental 

composition. The interaction of electrons with matter in electron microscopy can produce 

different signals which can be used to characterize the sample; secondary electrons to 

provide information on morphology of the particles, backscattered electrons for detection of 

high atomic number elements as bright regions and emitted X-rays to provide information on 

elemental composition. SEM-EDX has been used to obtain information on the morphology 

and elemental composition of radioactive particles. The samples were prepared by fixing the 

sample (particles on nitrocellulose filter paper above) on sticky carbon pads stuck on 

aluminum stubs (12 mm dia) suitable for SEM-EDX analysis. The instrument used 

throughout this study was a FEI XL 30 ESEM. 

2.2.4.  Alpha spectrometry. Alpha spectrometry was used to identify the radionuclide and 

isotopic composition of the radioactive particles. The separated particles were dissolved in 

concentrated nitric acid. The mixture was brought to the boil on a hot plate, then left to cool 

to ensure full sample digestion. The sample solution was made up with deionized water, 

filtered through a 0.22 µm PVDF membrane filters, evaporated to dryness and redissolved in 

10 ml of 0.1 M HNO3. An aliquot  of the 10 ml sample solution was evaporated to dryness 

and dissolved in 15 ml electrolyte solution ( 4% ammonium oxalate in 0.3 m HCl), and 

electrodeposited onto a stainless steal planchette, with electrodeposition conditions (0.5 A, 

20 V, 2 hrs). The remaining aliquot (5 ml) of the sample solution was used for Pu separation 

using anion exchange resin (Bio-Rad AG1-X8) to determine Pu isotopic composition [10].  

Alpha sources were counted using a PIPS type Si detector (Canberra, Belgium, model A 450 

– 18 AM), counting efficiency 20-25%. Counting time was variable depending on sample 

activity. Genie 2000 3.1 software was used to analyze alpha spectra.  

 

3.  Results and Discussion  

3.1.  Size, shape and composition analysis by SEM-EDX 
 
Initially, some samples were analyzed before density separation, preparing SEM samples 

from the sediment which had been shown by autoradiography to contain radioactive 

particles. Backscattered electron imaging (BSE) was used to find high Z (uranium) 

particles as bright spots (Figure 6).  
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Figure 6. BSE image of a sediment sample shows uranium particles as bright spots. The 

gray materials are the sediment matrix. 

 

    The distribution of radioactive particles in the sample is not homogeneous. The bright 

particles were characterized by size, shape and elemental composition, and they were 

found typically to lie in the size range 1-20 µm (Table S1, supporting information). An 

example of a particle is shown in Figure 7 below.  

 

 

 

Figure 7.  BSE image (left) and secondary electron (SE) image (right) of a particle. 

 

The BSE image shows the particle as bright patch, while the SE image shows the shape 

and morphology of the particle. It is difficult to distinguish the particle from the sediment 

matrix in the SE image, so BSE imaging is very useful. The X-ray analysis for the above 

particle was acquired from both spot and area analysis on the bright area on BSE image, 

giving characteristic spectra (Figure 8). 
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Figure 8. EDX spectrum of a spot on the bright area of the BSE image. 

 

The EDX spectrum shows that the particle is composed mainly of U with some other 

elements (C, O, Al, Si and Fe), typical of the sediment matrix also present. However, after 

heavy liquid density separation the matrix was largely eliminated, leaving clean U particles 

(Figure 9). 

 

 

 

Figure 9. An electron image (BSE) and energy dispersive X-ray analysis (EDX) of a 

particle separated by heavy liquid. 

The spectrum above shows that the particle is mainly uranium. The particle may contain 

other elements (e.g. Pu as these particles were irradiated), but these are not detectable by 

EDX. To determine the presence of any other radionuclides, α-spectrometry was applied.  

3.2.  Radionuclide and isotopic composition  
The radionuclide composition of the dissolved heavy particles analyzed by alpha 

spectrometry is shown in (Figure 10).  
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Figure 10. Alpha spectrum of the dissolved particles. Counting time = 2.28 days. 

 

The alpha spectrum shows that a range of α-emitting transuranium radionuclides was 

identified in the particles, suggesting that these particles have been irradiated. Pu was 

separated from an aliquot to determine the Pu activity ratio 238Pu/239+240Pu which was 

consistent with that from the Sellafield  discharges (Figure 11). 
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Figure 11. Left: Alpha spectrum of Pu isotopes and the activity ratio 238Pu/239+240Pu . Right: 
238Pu/239+240Pu activity ratio for 1970s Sellafield discharges [11]. 

 

A major source of error in an alpha spectrometry result is the uncertainty arising from 

the counting process. This arises from the random nature of radioactive decay and, 

provided the peak integrals are large (some hundreds of counts), the distribution of counts 

is described by the Poisson distribution such that, for a peak integral of I counts, the 

standard deviation is σ = (I)1/2/I. At 2 σ uncertainty the activity ratio (238Pu/239+240Pu = 

0.235 ± 0.07) may lie between 0.165 and 0.305, which is still consistent with that from 

Sellafield (Figure 11 right).   
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Counting time = 4.97 days  

238Pu/239+240Pu = 0.235 ± 0.07 
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Three particles analyzed by SEM-EDX (supporting in formation, Figure S1), were 

dissolved in nitric acid, and then analyzed by ICP-MS to determine the atom ratio 
235U/238U, which showed a depletion in 235U (235U/238U = 0.002149 ± 0.000108), 

suggesting that U was derived from spent Magnox fuel. The activity ratio 234U/238U 

measured by alpha spectrometry after chemical separation of U, showed depletion in 234U 

as well (234U/238U = 0.26 ± 0.0351) (supporting information, Figure S2), suggesting that 
234U gets burned up gradually during irradiation, by absorbing neutrons.  

4.  Conclusion    
Radioactive particles, typically 1-20 µm size, from estuarine salt marsh have been 

identified. Elemental analysis suggests that these particles are composed mainly of 

uranium, although alpha spectrometry shows that they have been irradiated, and 

transuranium nuclides (Pu, Am and Cm) can be identified in them. These results 

demonstrate conclusively the persistence for some decades, of irradiated fuel particles in 

the marine and estuarine environments.  
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Supporting information 
 
 
 

Sample collection site  
 

 
 

 
 

Figure S1. top: The Ravenglass esturay showing the location of salt marsh. Bottom: The 
salt marsh showing the location of sampling site (UK Natinal Grid Reference 088 947). 
Adapted from (Morris et al., 2000, doi:10.1006/ecss.2000.0705).  
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Additional information on typical particle characteristics  
 

Table S1. Observed particle sizes and morphologies* 
Particle No Size µm  Morphology  
1 12  Irregular flattened  
2 8 Angular  
3 3 Volume  
4 2 Blurry  
5 3 Sharp  
6 3 Surface  
7 2 Uniform  
8 3 Blobs  
9 2 Triangular  
10 20 Crust  

 
*Separation of particles was on a mass of 1 g and distribution of particles was highly 
variable across the samples analysed, implying heterogenity.   
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Analysis of three nuclear fuel particles  
 
The particles were sepatared by heavy liquid density separation and then analysed using 
SEM-EDX (Figure S1).  
 
 

  

  
 
Figure S2. BSE image of three separated particles and their EDX spectra.  
 
 
 
The particles were then dissolved in nitric acid and analysed using ICP-MS to obtain the 
atom ratio 235U/238U = 0.002149 ± 0.000108. 
 
Uranium was separated from an aliguot of the dissolved particles and alpha spectrometry 
was used to measure the activity ratio  234U/238U (Figure S2).  
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Figure S3. Alpha spectrum of U fraction of the three dissolved particles. Counting time = 
11.843 days. 
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Chapter 3 
 
 
 
 
 

Physicochemical Characterisation of Depleted Uranium (DU) Particles at 
a UK Firing Test Range 

 
 
 
 

The material in the following section has been published in the Journal Science of the Total 
Environment.  
 
Science of the Total Environment 408 (2010) 5990–5996 
 
doi:10.1016/j.scitotenv.2010.07.075  

 
The candidate’s contribution was particles isolation, electron microscopy, radiochemical 
separation, alpha spectrometry, X-ray diffraction, data interpretation, and writing the paper. 
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Abstract  
 
Depleted uranium (DU) particles were isolated from soils at Eskmeals, UK, where DU 

munitions have been tested against hard targets, and unfired DU buried in soils for 

corrosion studies. Using electron microscopy and X-ray analyses, three classes of particles 

were identified: (1) DU aerosols and fragments, typically 1-20 µm diameter, composed 

mainly of uranium as UO2 and U3O8, (2) solidified molten particles, typically 200-500 µm 

diameter, composed of U, mixed with Fe from target materials. (3) Deposits and coatings, 

often of metaschoepite on sand grains up to 500 µm diameter. The first two particle types 

derive from firing impacts, the last from corrosion of buried uranium metal. Alpha and 

mass spectrometry allowed quantitative elemental and isotopic characterisation of DU-

containing particulate environmental samples.   

 

Keywords: Firing impact, Metaschoepite, Depleted uranium, DU corrosion  

 

1. Introduction  

 Depleted uranium (DU), a by-product of the U enrichment process, has been used in 

military munitions because of its high density and penetrating power. However, testing and 

use of such munitions has led to release of DU into the environment at several locations 

around the world.  

Natural uranium consists of three isotopes: 234U, 235U and 238U. In nuclear fuel production, 

natural uranium is isotopically enriched, increasing the concentration of the fissile isotope 
235U, usually to 3-5 atom%. The residue from this enrichment process is called ‘depleted 
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uranium’ and has a decreased proportion of both 234U and 235U, and hence a slightly 

increased proportion of 238U as shown in Table 1 (UNEP, 2003; Oliver et al., 2007).  

 

 

Parameter  

 

DU Natural U 

Atom % 238U (t1/2 4.47 x 109 yr) 99.79 99.28 

Atom % 235U (t1/2 7.04 x 108 yr) 0.20 0.72 

Atom % 234U (t1/2 2.45 x 105 yr) 0.001 0.0054 

235U/238U activity ratio  0.013 0.046 

235U/238U atom  ratio 0.002 0.0072 

234U/238U activity ratio 0.18 0.8 -1.2a 

234U/238U atom ratio 0.000010 0.000056 

 

Table 1. Composition of natural uranium and DU. a the ratio is given as a range because of 

the possibility of preferential leaching of 234U.  

 

Depleted uranium therefore has an isotopic fingerprint clearly different from that of natural 

uranium and this can be used to identify and quantify DU contamination in environmental 

samples. 

 

Depleted uranium alloys (99.25% U/ 0.75% Ti) were used extensively during the Gulf War 

1991, Bosnia 1995, Kosovo 1999 and Iraq 2003. The Gulf War resulted in the deposition 

of approximately 320 tonnes of DU in the terrestrial environment (Bleise et al, 2003). 

When a DU round hits a hard target such as armour plate, some DU aerosolizes and ignites 

at high temperature during the impact, because U metal is pyrophoric. Oxidized uranium 

aerosols and fragments will thus be produced and deposited around the area surrounding 

the target (Papastefanou, 2002; Craft et al., 2004). DU particles ranging from sub-microns 

to several hundred microns, and comprising the uranium oxides UO2 and U3O8 were 

observed in Kosovo and Kuwait (Salbu et al, 2003; Salbu et al, 2004). 70 - 90 % of aircraft 

DU projectiles miss their targets and embed in the ground at a depth of more than 2 m in 

clay soil and 6-7 m in soft soil (UNEP, 2003). Because of the thermodynamic instability of 
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metallic uranium and its alloys in the natural environment, they will readily corrode and 

new U-rich mineral phases may form at the reactive surface, while some uranium may be 

lost in solution as very mobile UO2
2+ and reach the ground water (Mellini and Riccobono, 

2005). In the UK, the Ministry of Defence (MOD) has conducted test-firing of DU 

munitions against hard targets, and experimental work on corrosion of unfired DU alloy in 

soils at Eskmeals firing range, to study the overall environmental impact of DU (Dstl, 

2006; Oliver et al., 2007). In order to understand the environmental behaviour of DU 

particles, information on particle characteristics such as size, morphology, elemental 

composition, crystalline structure, and isotopic composition of U is useful. In this study, a 

combination of scanning electron microscopy with X-ray analysis (SEM-EDX), 

inductively coupled plasma-mass spectrometry (ICP-MS), alpha spectrometry and single 

particle X-ray diffraction (XRD) were used to characterise DU particles from Eskmeals.  

 

2. Methods   

2.1 Study site and sample collection  

At Eskmeals, UK (national grid reference, SD 078 929), testing of DU munitions began in 

the 1960s and continued until 1995, with the most intensive period during the 1980s. The 

test programme involved firing DU projectiles at hard target arrays enclosed within a butt, 

designated VJ Butt. This testing exposed the area to DU contamination from aerosols and 

DU fragments produced on impact (Oliver et al., 2007). Subsequently, the MOD 

commenced a programme on DU corrosion with burial of a number of unfired DU coupons 

in a “DU garden” and retrieval at intervals to quantify corrosion processes and analyse 

corrosion products (Dstl, 2006). Soil samples were collected from two DU affected sites. 

At both sites, the soil is a raw dune sand.  

Site 1 (firing site) comprises topsoil collected in front of the target area ~ 40 m from the 

impact point. This sample is expected to contain exclusively DU aerosols and fragments 

produced on impact of DU rounds with armour.  

Site 2 (corrosion site) comprises subsoil collected from the DU corrosion experimental 

area where DU coupons were buried and retrieved. This sample is ca 100 m from the 

impact point and is expected to contain both impact particles and corrosion products of 

DU. Eskmeals firing range and the sample collection positions are shown in supporting 

information (Fig.S1).  

 

2.2 Autoradiography  

Storage phosphor autoradiography was used to localize DU particles by spreading the 

sample on filter papers (approx 1 mg sample/cm2) and then exposing a storage phosphor 
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screen (25 by 20 cm) to the sample overnight, then reading the screen using a phosphor 

Imager (GE Healthcare). An example autoradiograph is shown in supporting information 

(Fig. S2). 

 

The black spots in the obtained image represent DU particles (aerosols and fragments) in 

the sample. DU fragments were visible to the eye, so they were picked up individually, 

whereas DU aerosols were difficult to distinguish from surrounding soil, so they were 

detected by sticking the soil, which contains them, on a carbon sticky pad mounted on 

aluminium stub for SEM analysis.  

 

2.3 Scanning electron microscopy (SEM)/Energy dispersive X-ray analysis (EDX) 

SEM was used to obtain information on the morphology and size of the particles using 

secondary electron (SE) and backscattered electron (BSE) imaging. The latter was 

particularly useful for identifying DU particles. For each particle identified by SEM, the X-

ray elemental composition (EDX spectrum) was obtained.  

 

2.4 X-ray diffraction (XRD) 

X-ray diffraction was used to identify uranium-containing crystalline phases present in DU 

particles. For particle analysis, an Xcalibur-2 diffractometer from Oxford Diffraction, 

equipped with a charge-coupled device (CCD) detector was used to obtain powder 

diffraction patterns from individual DU particles using MoKα radiation (λ = 0.071 nm). 

The particle was mounted on the tip of a thin glass fibre and rotated to sample all particle 

orientations. The XRD patterns were interpreted using the inorganic crystal structure 

database (ICSD).   

 

2.5 Chemical separation and measurement of uranium 

DU particles from site 2 were cut away from the carbon pads (leaving a small amount of 

pad to avoid damaging the particles), whereas DU particles from site 1 were smaller, and 

were therefore isolated using heavy liquid density separation. Single particles were then 

dissolved in analytical grade concentrated nitric acid (69% HNO3, 2 ml per particle) in 5 

ml beakers. The mixture was covered with a watch glass and brought to the boil on a 

hotplate, then left to cool to ensure full sample digestion. The sample solution was made up 

with 3 ml de-ionized water, filtered through a 0.22 µm PVDF membrane filter, evaporated 

to dryness and redissolved in 10 ml of 0.1 M HNO3. 
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2.5.1 Alpha spectrometry  

Alpha spectrometry was used to measure the 234U/238U activity ratio. An aliquot (2 ml) of 

the 10 ml DU sample solution was evaporated to dryness and dissolved in 30 ml of 2.5 M 

HNO3. A small column (3.5 ml bed volume) of TRU resin (EiChrom Industrial, Darien, 

Illinois, USA) was conditioned with 30 ml 2.5 M HNO3. The sample solution was passed 

through the preconditioned column, 25 ml de-ionized water was passed to remove the nitric 

acid from the resin bed, then uranium was eluted using 20 ml 10% m/v (NH4)2 CO3. 1 ml 

10% (m/v) KHSO4 was added and the beaker warmed to dryness. The residue was treated 

successively with 10 ml conc HNO3, then 3 ml conc HCl. The white chloride residue was 

dissolved in 15 ml electrolyte solution (4% ammonium oxalate in 0.3 M HCl) and uranium 

electroplated onto a stainless steel planchette (0.5 A, 20 V, 2 hrs). A minute before the 

power was turned off, 1 ml of concentrated ammonia solution was pipetted into the cell. 

The planchette was removed from the cell, washed with deionised water and acetone and 

air-dried for alpha counting. 

 

2.5.2 ICP-MS and ICP-AES 

Inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure 235U/238U 

and 234U/238U atom ratios. A 2 ml aliquot of DU sample solution was made up to 10 ml 

with 0.1 M HNO3 for each sample. An additional 6 ml aliquot of DU sample solution was 

made up to 10 ml with 0.1 M HNO3 and analysed by inductively coupled plasma-atomic 

emission spectrometry (ICP-AES) to quantify U and selected stable elements (Fe, Ti, W, 

Cr and B).  

 

3. Results and Discussion  

3.1 Firing impact- derived particles  

3.1.1 SEM/EDX 

DU particles from site (1) will comprise aerosols and fragments formed from the impact of 

DU rounds on a hard target. Two types of firing impact particles were found; small aerosol 

particles composed mainly of uranium, and bigger particles composed of a mixture of 

uranium and iron with variable U/Fe ratio. The first type of particle was more abundant 

than the other (supporting information, Fig. S2).  

 

SEM was used in BSE mode to identify particles with high atomic number elements 

(primarily U) as bright areas (Fig. 1). 
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Fig. 1. (a) BSE image  of DU aerosols (bright particles) in a soil matrix. (c) BSE image of 

a spherical particle (bright ball). (e) BSE image of an aerosol fragment.Black spots on 

images a, c and e are the EDX targets shown in b, d and f respectively. Scale bars are 5, 5 

and 10 µm for images a, c and e respectively.  

 

The electron micrographs above illustrate the variability in particle size and shape found, 

although X-ray analysis consistently showed that they were composed largely of uranium. 

The aerosol particle sizes range from around 1 µm up to about 20 µm, and the distrubution 

of particles in the sample was heterogeneous, so there was no clear information about the 

abundance of particles in soil or the proportions of different particle morphologies. The DU 

particle in Fig.1c is an example of a characteristic spherical morphology, perhaps 

suggesting that this particle type represents condensation of molten uranium. The aerosol 

particles found in this study were very similar to DU aerosols produced in the DU 
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Capstone study, which involved firing DU penetrators aginst conventional armour (Krupka 

et al., 2009), and to the DU aerosols produced in Kosovo (Danesi et al., 2003).  

 

Another group of larger particles also has a different, characteristic morphology, 

suggesting they may be solidified molten droplets containing a mixture of depleted 

uranium and iron, the latter probably derived from the target material (Fig. 2). On occasion 

(e.g. Fig. 2e), the composition is consistent with this particle type, but a different 

morphology is observed.  

 

Fig.2. (a) BSE image of a hollow spherical molten particle. (c) BSE image of a small U-Fe 

alloyed droplet. (e) BSE image of melted fragments. (f) Black spots on images a, c and e 

are the EDX targets shown in b, d and f respectively. Scale bars are 200, 5 and 100 µm for 

images a, c and e respectively.  
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The various molten particles showed heterogeneity in particle size and shape, but X-ray 

analysis showed that they were composed mainly of alloyed uranium and iron, although the 

ratio Fe/U varied considerably among particles. The BSE image of the hollow spherical 

particle is relatively uniform, which means that U is homogeneously distributed on the 

surface of the particle. X-ray analysis showed a predominant Fe/U composition, though 

with some localised variability in Fe:U ratio. Similar alloyed Fe-U particles were identified 

following test firing of DU rounds against spaced armour targets at a firing range in the US 

(Patrick and Cornette, 1978). This type of particle has rarely been identified in post-

conflict environments (Lind et al., 2009), because most DU rounds have been fired from 

aircraft, and relatively few of these projectiles hit the target (Bleise et al., 2003), whereas in 

test firing, DU rounds were fired from a gun close to the hard target, which ensures 

interaction between DU and target materials.  

 

3.1.2 Elemental Composition and X-ray diffraction. 

ICP-AES was used to identify and quantify a range of stable elements (Fe, Ti, W, Cr and 

B) in five representative DU firing impact particles. The concentrations of these elements, 

as mole ratio of element/U, are listed in Table 2.    

 

 

Sample  

 

Fe/U 

 

Ti/U 

 

W/U 

 

Cr /U 

 

B/U 

 

DU1 11.934  0.040 0.015 0.111 ND 

DU2 18.591 0.059 0.063 0.468 0.760 

DU3 1.467 0.008 0.013 0.015 0.036 

DU4 1.308 0.063 0.031 0.008 0.107 

DU5 0.190 0.049 0.062 ND 18.70 

 

                 ND: not detected 

Table 2. Mole ratio (stable element:U) in firing impact particles 

 

The stable elements could be derived from one or more of the target materials, the DU 

alloys or the firing range site. These DU particles have a very variable Fe/U mole ratio, 

with an excess of Fe over U in most particles, which reflects the violent interaction 

between DU penetrators and target at impact. The Cr/U ratio seems to be correlated with 

Fe/U ratio, suggesting that Fe and Cr derive from the same origin (target materials). The 

Ti/U ratio ranges between 0.04 and 0.063 in most particles, and this may reflect the fact 
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that DU penetrator contains 0.75% Ti. Boron and tungsten could be derived from the soil 

of the firing range, however the B/U ratio in DU5 suggest that B could be derived from 

other source, probably target material. 

 

Single particle X-ray diffraction patterns were obtained for several DU firing impact 

particles. 2/3 of the diffraction patterns matched the principal reflections of UO2 

(Uraninite), and 1/3 of the diffraction patterns matched the principal reflections of U3O8 

(Fig.3).  
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Fig.3. X-ray diffraction patterns of two DU firing impact particles. (A) Diffraction pattern 

matches with the characteristic reflections of UO2 (uraninite). (B) Diffraction pattern 

matches with the characteristic reflections of U3O8.  

 

These data are consistent with other studies (Salbu et al., 2003; Salbu et al., 2004), which 

found that about 50% of DU firing impact particles from Kosovo and Kuwait was present 

mostly as UO2, and the remainder as a mixture of UO2 and U3O8 or as U3O8.  
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Török et al (2004) showed that U in DU-containing soil particles from Kosovo, was 

predominantly U(IV), consistent with the presence of UO2. UO2, with variable amounts of 

U3O8, was observed in DU particles released into the environment by combustion of scrap 

DU metal at a factory in Colonie, USA (Lloyd et al., 2009). The most commonly reported 

phases in environmental samples containing fired and ignited DU are UO2 and U3O8 

respectively, a conclusion supported by this study.  

 

3.1.3 Isotopic fingerprinting  

ICP-MS and alpha spectrometry were used to obtain the atom ratios 235U/238U and 
234U/238U and the activity ratio 234U/238U, respectively, for 5 DU firing impact particles as a 

measure of depletion. All the isotopic ratios confirmed that U in these particles was 

predominantly DU (> 93%) (Supporting information, Table S1). From the activity and 

atom ratios, the uranium inventory in Eskmeals soil had isotopic signatures indicative of 

93% - 98% DU (Oliver et al., 2007; Oliver et al., 2008), consistent with that of this study. 

In the wider context, uranium isotopic ratios of DU particles examined in this study are 

comparable to those reported from Kosovo (Torok et al., 2004).  

 

3.2 Corrosion site particles 

3.2.1 SEM/EDX 

At site 2 (corrosion site), two types of particles were found. The first type is visible to the 

eye, yellow in colour, and composed mainly of U. The other type is also visible to the eye 

but is black in colour, speckled with uranium, and has a more complex elemental 

composition (Fig. 4). These two types of particles were concentrated close to the corroding 

DU coupons, suggesting that uranium is present as corrosion products distributed on the 

surface of the surrounding sand grains.   
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Fig. 4. (a) BSE image  of a yellow DU particle, coated with U corrosion products (bright 

areas). (c) BSE image of another yellow DU particle, partly coated with DU (bright areas 

on the surface of the sand grain). (e) BSE image of an aggregate of yellow corroding DU. 

(g) BSE image of a black particle speckled with DU (bright spots on the surface). Black 
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spots on images a, c, e and g are the EDX targets shown in b, d, f and h respectively. Scale 

bars are 100, 50, 10 and 200 µm for images a, c, e and g respectively.  

 

Yellow DU corrosion products have also been observed in corroded DU penetrators, which 

had been fired and hit the ground in Kosovo (Mellini and Riccobono, 2005), and in DU 

particles originating from a fire in a DU ammunition storage facility in Kuwait (Lind et al., 

2009). 

 

3.2.2 X-ray diffraction 

X-ray diffraction patterns were obtained for two yellow DU particles and a pure quartz 

particle, the last used as a reference for background subtraction (supporting information, 

Fig.S3). Subtraction of background from the measured patterns helps to expose weak 

diffraction lines from the specimen, which might otherwise not be possible to distinguish 

from the background signal. The diffraction pattern, after subtraction of the quartz pattern, 

is illustrated in Fig. 5, and shows the presence of several reflections characteristic of 

metaschoepite. 

 

Fig. 5. X-ray diffraction pattern of the yellow U coating, together with the characteristic 

reflections of metaschoepite. The feature around 12o 2θ is an artefact arising from 

subtraction of the quartz reference pattern, which has a very strong reflection at this 

position.  
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 Specifically, the peaks in the diffraction pattern of the yellow deposit at 6o, 11o and 13o 2θ 

match reflections in the metaschoepite [(UO2)8O2(OH)12](H2O)10 pattern. This is consistent 

with the finding of Handley-Sidhu et al. (2009), who identified metaschoepite in laboratory 

microcosm experiments, and also with Buck et al. (2004), who identified schoepite and 

metaschoepite as the primary corrosion products of DU in a site in the US.  

 

3.2.3 Isotopic Fingerprinting 

ICP-MS was used to measure the 235U/238U atom ratio for 9 black particles and 9 yellow 

particles. The black particles have a variable 235U/238U ratio, between depleted and natural 

compositions, although most are strongly depleted. By contrast, the yellow particles are 

essentially pure DU (supporting information, Fig. S4). This probably reflects the different 

uranium masses in the two particle types. For black particles, the atom ratio 235U/238U 

decreases as the total mass of U in the particle increases, which is consistent with mixing 

variable proportions of natural and DU, with most particles containing ~ 20% natural U, 

though one contains ~ 95%. For yellow particles, the atom ratio 235U/238U is always 

consistent with the DU ratio; this means that U in yellow particles is essentially all DU 

(supporting information, Fig. S5).  Alpha spectrometry was used to obtain the activity ratio 
234U/238U for 4 of these yellow DU particles. The activity ratio 234U/238U showed a 

signature of predominately DU (supporting information, Fig. S6), consistent with the 

indication from the ICP-MS results, that most of the particles are fully depleted.  

 

4. Conclusions  

Autoradiography and SEM/EDX are useful for localization of DU particles and obtaining 

information on morphology, size and elemental composition. X-ray diffraction allows 

determination of the crystal structure of single DU particles, and showed that the aerosols 

were uranium oxides UO2 and U3O8, and the yellow particles were metaschoepite. Using 

the atom ratio 235U/238U, obtained by ICP-MS, and the activity ratio 234U/238U, obtained by 

alpha spectrometry, it was possible to quantify DU particulate contamination in 

environmental samples.  

 

Depleted uranium particles produced by firing impacts are different from particles 

produced by DU corrosion. DU aerosols and fragments and molten particles found near the 

target area (firing impact site), have sizes, morphologies and compositions consistent with 

origin from firing impact. However, the yellow particles from the corrosion site are all 

believed to form through DU corrosion. These results demonstrate the diversity of particles 
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which can form through use of DU munitions, and the potential for these to persist in the 

environment.  
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Supporting Information  
 

 
 

Fig. S1. Schematic of Eskmeals firing range showing sample positions (adapted from 
Oliver et al., 2007).  

 
 

 
 

Fig. S2. Autoradiograph of DU sample showing uranium particles as black spots. The 

small size hot spots represent aerosol particles while the big spot (top left) represents a DU 

fragment.  
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. 
 

Sample 235U/238U atom 
ratio 

234U/238U atom ratio 234U/238U activity 
ratio 

DU1 0.00189 ± 
0.0000113 

6.69E-06 ± 2.05E-07 0.128 ± 0.005 

DU2 0.00190 ± 
0.0000114 

6.94E-06 ± 7.41E-07 0.133 ± 0.024 

DU3 0.00234 ± 
0.0000487 

1.29E-05 ± 9.42E-07 0.263 ± 0.020 

DU4 0.00186 ± 
0.0000115 

7.28E-06 ± 9.01E-07 0.118 ± 0.018 

DU5 0.00185 ± 
0.0000090 

6.32E-06 ± 1.30E-06 0.160 ± 0.017 

DU – Natural U     0.002  - 0.0072       1E-05 - 5.6E-05           0.18 – 1.2 
                           

Table S1. 235U/238U and 234U/238U atom ratios and 234U/238U activity ratio of 5 DU firing 
impact particles. 
 

 

 Fig.S3. Diffraction patterns of two yellow DU particles, pure sand pattern and     

Metaschoepite reflections. 
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Fig. S4.  235U/ 238U atom ratio representative of analyses taken on hot spots on black DU 

particles (1-9) such as the one shown in (Figure 4, g )  and on the DU particles shown in 

(Figure 4, a, c, e) which were visibly yellow (10-18). The natural ratio is 0.0072 (green 

line) and the DU ratio is 0.002 (red line). 
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Fig. S5. 235U/238U vs. U mass for black and yellow particles. Green line represent natural U 

ratio and red lines represent DU ratio.  
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Fig. S6. 234U/238U activity ratios for 4 yellow particles (DU corrosion particles). The 

typical DU ratio is (0.18) and the natural ratio range is (0.8 – 1.2) as indicated on the 

graphs above. 
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Chapter 4 
 
 
 
Application of Secondary Ion Mass Spectrometry to Analysis of Depleted 
Uranium Particles from a Test-Firing Range. 
 
 
The material of the following section is in the process of being submitted to Journal of 
Analytical Atomic Spectrometry   
 
The candidate’s contribution was particles isolation, electron microscopy, data 
interpretation and writing up the paper.. 
 
SIMS analysis was carried out by Ian Lyon and Torsten  Henkel (University of 
Manchester) 
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Abstract  
 
Time of flight secondary ion mass spectrometry (TOF-SIMS), was used to examine 

depleted uranium (DU) particles derived from test-firing of DU penetrators against hard 

targets. Imaging thin sectioned particles with TOF-SIMS revealed the internal chemistry, 

and showed the distribution of both major elements (Fe, U, Cr), and a wide range of trace 

elements (e.g. Ti, K, Ca, Al, Mg). Quantitative analysis showed correlation between the 

following groups of elements: Fe, Cr, Mn, Ni derived from target material; trace elements 

derived from soil, and U and Ti, derived from DU (0.75%Ti) alloy. The isotopic 

composition of U was consistent with DU.  

 

Introduction  
 
Secondary ion mass spectrometry (SIMS) is widely used for surface analysis and has been 

applied mainly to characterisation of materials in semiconductor technology, metallurgy, 

geology and biology. It is also a powerful tool in particle analyses. 1,2  

SIMS in general is used for surface analysis. Samples are bombarded with primary ions 

(10-30 keV), generating secondary ions in a sputtering process from the surface layers. 

Secondary ions are then separated according to their mass to charge ratios by typical 

magnetic sector, quadrupole, double focusing, or time of flight mass analyzers. 

Time-of-flight secondary ion mass spectrometry (TOF-SIMS), analyzes secondary ions 

according to their different flight times in the tube when they reach the detector.3 The 

choice of primary ion beam in TOF-SIMS depends on the type of analysis. For depth 

profiling, a high dosage dynamic primary ion beam would be the choice. On the other 

hand, a low dosage (static) primary beam is better suited to mapping the distribution of 

elements on a sample surface. 4 

 

Static TOF-SIMS is unique since it yields surface chemical information about a wide range 

of elements with high mass resolution. Moreover, using focused ion beams, it is possible to 
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obtain mass spectra from submicron-sized areas. Therefore, by rastering the ion beam 

across the surface and collecting a mass spectrum at every point, it is possible to determine 

chemical distributions with high spatial resolution. 5  

 

SIMS has previously been used to characterize particles stemming from nuclear activities. 

The main purpose has been to determine the isotopic composition of U and Pu, as a 

fingerprint of the materials present in the particles.6, 7, 8, 9 SIMS has also been used to 

analyze environmental radioactive particles originating from different sources (e.g nuclear 

weapon tests,10 the Chernobyl reactor, 7 or depleted uranium 11).  

 

Following the use of depleted uranium (DU) munitions in the Gulf war and Balkan 

conflicts, the environmental impact of depleted uranium and its behaviour in the 

environment have been of great concern.12 When a DU round hits a hard target such as 

amour plate, some DU aerosolizes and ignites at high temperature during the impact, 

because uranium metal is pyrophoric. Heating and aerosol formation from the target 

material will also create small, reactive particles and fragments. DU-containing particles 

will therefore be produced and dispersed into the terrestrial environment. In this study 

TOF-SIMS was used to explore the elemental and isotopic compositions of depleted 

uranium particles derived from test-firing of DU penetrators against hard targets, by 

exploiting the imaging capability and high mass and spatial resolution of TOF-SIMS.  

 

Methods and Analyses 

Study site and sample collection  

At Eskmeals, UK (national grid reference, SD 078 929), testing of DU munitions began in 

the 1960s and continued until 1995, with the most intensive period during the 1980s. The 

test programme involved firing DU projectiles (99.25%U/0.75%Ti) at hard target arrays 

enclosed within a butt. This testing exposed the area to DU aerosols and fragments 

produced on impact. 13 A topsoil sample was collected from in front of the target area ~ 40 

m from the impact point. 

 

Particle separation  

Storage phosphor autoradiography was used to localize DU particles by spreading the 

sample on filter papers (approx 1 mg sample/cm2), exposing a storage phosphor screen (25 

by 20 cm) to the sample overnight, then reading the screen using a phosphor Imager (GE 

Healthcare). An example autoradiograph is shown in Fig.1. 
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The black spots represent DU particles (aerosols and fragments) in the sample. Many DU 

fragments were visible to the eye, so they were picked up individually. The picked particles 

were embedded in epoxy resin (Araldite, RE1DPF) and dry-polished to produce a flat thin 

section of the sample. Two types of particle arising from hard target impact can be 

identified, 14 globular, believed to reflect solidified molten material, and irregular, believed 

to reflect fragmentation. One example of each type was selected for study. 

 

Particle analyses  

 

   Scanning electron microscopy (SEM)/Energy dispersive X-ray analysis (EDX) 

The sample was carbon coated to avoid charging effects when analyzed by SEM. 

Backscattered electron (BSE) imaging was used to identify the different phases of the thin 

section sample. X-ray analysis was used to explore the elemental composition (EDX 

spectrum), for each phase in sample surface. Once the surface elemental mapping of the 

thin section sample was complete, the carbon coating was removed by polishing, prior to 

SIMS analysis.  

 

   Secondary ion mass spectrometry (SIMS) 

The thin section sample was coated with ~20 nm of Au to ensure uniform electrical 

potential at the sample surface. Prior to analysis, 5 nA direct current (DC) Au ion beam 

was applied to the whole particle surface (up to 300µm x 300µm), firstly to sputter through 

this coating, and secondly to ensure that the analyzed area was in sputter equilibrium.  For 

Fig.1 Autoradiograph of DU sample 
showing hot spots 
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this study a new time-of-flight secondary ion mass spectrometry (TOF-SIMS) instrument 

was used. It was equipped with a 25 keV Aun
+ liquid metal ion gun (LMIG) constructed by 

Ionoptika Ltd. (Southampton, UK; IOG 25Au). The primary ion species were selected by 

mass using a Wien filter. The secondary ions were detected using a time-of-flight mass 

spectrometer (R-500 from Kore Technology, Ely, UK), consisting of a two-stage reflectron 

and micro-channel plate (MCP) detector with secondary ion post-acceleration of 2.4 kV.   

 

SIMS measurements involved rastering a pulsed primary ion beam (pulsed at 5 kHz with 

pulse lengths of 40ns) over selected areas (60 - 125 µm field of view), and recording each 

scan separately, results in submicron spatial resolution. These scans (images of the of 

secondary ions generated from the surface), contained 256 x 256 pixels, with 30 primary 

ion shots per pixel and each pixel containing a complete mass spectrum,. High mass 

resolution (m/δm ~ 3000) was achieved by using delayed extraction.15  
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 Results and discussion  

 SEM-EDX  

   Particle A (Molten Particle) 

 Fig. 2 shows an elemental map of the particle thin section, which is composed mainly of 

two phases, one Fe-rich (dark grey) and one U-rich (light grey).  

 

Fig.2 BSE image of a thin section of a round DU particle (top right), and an enlargement of 

the square area on the particle section (bottom left). EDX spectra of the dark grey phase 

(bottom right) and light grey phase (top left). The three voids in the particle are present in 

the original sample. Bars in BSE images are 10 µm.  

 

X-ray analysis of the light grey phase showed predominant U-Fe composition, though with 

some localized variability in U:Fe ratio, and excess of U over Fe in brighter spots. The 

texture is consistent with the particle’s proposed origin from the crystallisation of molten 

material. 
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   Particle B (DU fragment) 

The thin section of the particle shows both a different morphology and different phases 

from particle A (Fig. 3). 

 

 

Fig.3 BSE image of a thin section of a DU fragment (Particle B), and the EDX spectra of 

different phases within the particle.  

 

The BSE image shows regions of four different compositions, and X-ray analysis shows 

that these phases comprise U-Fe, Fe, Fe-Cr and Si. The different phases presumably reflect 

the mixing of materials from different origins. U will be derived from the DU penetrator, 

Fe and Cr are probably derived from hard target material, while the Si-rich region may 

reflect incorporation of a sand grain.  

 

Using SEM-EDX, it was possible to map the distribution of major elements within thin 

section particles and obtain semi quantitative elemental composition. A more detailed 

elemental distribution of major and trace elements, from SIMS analysis of the two thin 

sectioned particles will be presented below. 
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SIMS  

   Molten Particle (Particle A)  

Elemental mapping  

A set of major and trace elements, chosen to be representative of penetrator, target and 

background materials, was mapped by collecting positive ion images (Fig. 4).   

 

Fig.4 Secondary ion maps show the distribution of elements within particle section, and 

BSE image of the particle (top left). Field of view 290 µm.  

 

The ion images show an almost homogeneous distribution of the major elements (Fe, U 

and Cr), and heterogeneous distribution of the other trace elements within the particle 

section.  

 

 Hydrocarbon contamination  

The presence of hydrocarbons gave significant mass interference problems since the 

hydrocarbon-derived ions span almost the entire mass spectrum. Since TOF-SIMS 

analyzes only the uppermost surface layers, contamination is possible. Usually the sample 

surface is cleaned using a direct current (DC) beam or primary ion beam to remove 

adsorbed contaminants before analysis. However, a cleaned sample surface can regain 

atoms and molecules like hydrogen and hydrocarbons from the residual gas or from the 

embedding resin which contains C, H and O. With its low duty cycle, the primary ion 
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source may not be able to prevent this adsorption sufficiently, especially when a large area 

is scanned 16. To minimize this interference, a 64 x 64 µm area from the particle section 

above, as free as possible from hydrocarbons, was analyzed (Fig. 5).  

 

Fig.5 Secondary ion maps showing the distribution of some elements and hydrocarbons 

within the particle section. Field of view 64 microns from the area between the edge and 

the hole in the middle of the top right image in Fig 2.  

 

Qualitatively, the ion images suggest that Fe and Cr correlate, and K, Na, Ca, Al correlate 

as well, but U does not seem to correlate with any element except, to some degree, with Ti. 

The hydrocarbon images in the bottom row suggest that the hydrocarbon-rich spots 

coincide with the Si ion map, suggesting that hydrocarbons originate in the particle and 

derived from the same origin along with Si. Statistically, there is a reasonably strong 

correlation (R = 0.87) between Si and CH3 (Supporting information, Fig. S1).  

 

 Quantitative analysis  

To obtain detailed information on element abundances and correlations in a particle 

section, quantitative analysis can be performed, based on the number of counts. Fig. 6 

shows another 72 x 72 µm area of the particle, selected to minimize hydrocarbon 

contamination. This area was analyzed by measuring element counts from an array of 36 

small circular regions of interest (~ 10 µm dia), almost covering the whole area.  
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Fig. 6 Secondary ion images of a 72 microns field of view (BSE image shown top left). 

Field of view is the area defined by the red square in Fig 2.  

 

The TOF-SIMS maps are generally consistent with the semiquantitative EDX data 

obtained from SEM imaging. The ion images show a lot of structure, which can be 

attributed to the different elements being derived from different sources. The simplest way 

to describe the relationship between different elements is the correlation coefficient R 

(Table 1). Correlation plots are shown in supporting information (Fig. S2).  

 

Elements Na-K Ca-Mg Al-Mg Fe-Mn Fe-Cr Ni-Cr U-Ti 

R 0.97 0.95 0.91 0.86 0.78 0.86 0.45 

 

Table 1. Significant correlation coefficients for different pairs of elements.     

 

Significance of the correlation will depend on the number of data points and their 

deviations from the regression line. This can be tested using the critical values of statistical   

significance of correlation coefficients (Table S1, supporting information). Testing R 

values for 36 data points, all correlations in Table 1 are significant at 95% confidence (p = 

0.05).  

 

On the basis of these correlations, the different elements in the particle can be grouped. 

The first group contains K, Ca, Al, Na, Mg, which may well indicate background material 

(a coastal sand). The second group contains Fe, Ni, Mn and Cr, probably derived from 
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target material 17 .As would be expected, U correlates with Ti because the DU projectile is 

composed of 0.75% Ti by weight.  

 

   DU Fragment (Particle B)  

Imaging and quantitative analysis  

A 125 x 125 µm area of the particle section, selected to be fairly free of hydrocarbons, was 

analyzed (Fig. 7).  

 

Fig. 7 Secondary ion images of 125 microns field of view (BSE image shown top left).  

 

The ion images suggest that U correlates with Ti, that Fe and Mn are correlated, and that K, 

Na, and Mg are also correlated. There is no clear visual relationship between Cr, Al and 

other elements. Chemical features in digital images lead to pixel populations in coherent 

clusters and can, therefore, be treated by multivariate statistical means to extract analytical 

information. Kohonen networks for assigning structures in secondary ion distributions to 

chemical phases can be used to classify the specific chemical features in the sample 18. A 

statistical analysis of the observed images was carried out by defining 19 small regions of 

interest on the Al, U, Cr, Fe ion images, where these elements are present in significant 

abundances (supporting information, Fig. S3). The counts for the different elements, 

normalized to the number of pixels in each region, were measured and scatter diagrams 
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were plotted to determine the pixel density and represent the relationship of the elements in 

the original sample (Fig. 8).   
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The element correlations in Fig 8 were significant at 95% confidence according to the 

critical value for 19 data points (Table S1, supporting information). The statistical analysis 

showed a correlation between U and Ti, and this may reflect the fact that the DU 

penetrators, and hence any residual material, contain 0.75 % Ti. There is a correlation 

between Fe, Mn, Ni, but Cr does not correlate with any element from the target material 

except Fe. However, there is a stronger correlation (R = 0.97, p < 0.05, significant 

relationship) between Cr and Fe in Cr-rich areas than in Fe-rich areas (R = 0.58, p > 0.05, 

non-significant relationship) (supporting information, Fig .S4), suggesting that Cr may 

have more than one physiochemical associations in this particle. Al, which correlates with 

background elements such as Ca and Mg in Particle A, does not correlate with any 

background element in this particle B. Al could be derived from composite armour 

(Chobham armour, which is composed of ceramic tiles encased within a metal matrix) or 

(less likely) the Al coating on the DU penetrator. Statistical analysis showed a relationship 

(R = 0.83, p< 0.05) between Al and Fe in Al, Fe and Cr areas (supporting information, Fig. 

S5), suggesting that Al derived from target material. A relationship (R = 0.83, p < 0.05) 

Fig. 8 Element abundance vs. element 

abundance (counts per pixel) diagrams, 

for statistically significant relationships 

showing correlation between different 

elements. 
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between Al and Ti was also observed (supporting information, Fig. S6), suggesting that 

target material may be another source of Ti.  

 

Isotopic composition of U 

   Particle B 

Measurement using different ions  

The 235U/238U atom ratio was also measured from the 125 x 125 µm area. The measurement 

was taken from a spot where the hydrocarbon interference was least, and gave an average 

ratio consistent with DU (Table 2).  

Ion    Atom ratio 235/238 

U+ 0.00237 ± 0.00059 

UO+ 0.00283 ± 0.00024 

UO2
+ 0.00240 ± 0.00021 

Average 0.00255 ± 0.00025 

Typical DU  0.002 

 

Table 2. 235U/238U atom ratio measured from a spot on U ion images.  

 

Determination of mean ratio 

The mean atom ratio 235U/238U was measured from the same area (125 µm), by defining 

seven small areas of interest on UO2
+ ion image (supporting information, Fig S3), and 

measuring the ratio in each area using the raw counts from 235UO2
+ and 238UO2

+ signals. 

The mean ratio was obtained by regressing 238UO2
+ against 235UO2

+ (Fig. 9).  
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Fig. 9 Regression of 235UO2

+ against 238UO2
+ for seven data points collected from areas of 

interest on UO2
+ image.  
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The value from regressing 7 data points according to the regression equation (Y= 0.0024X 

+ 6.669), is 235U/238U = 0.0024±0.00032, which is consistent with DU ratio. The ratio 

obtained from a spot measurement is in agreement with the mean ratio and consistent with 

DU ratio as well.   

 

  Particle A 

The isotopic composition of U was determined using the atom ratio 235U/238U. The ratio 

was originally measured from spots across the 72 x 72 µm area of the particle section, but 

the hydrocarbons on the surface affected the 235U signal. A better measurement was made 

by sputtering the primary ion beam continuously on a spot to minimize hydrocarbon 

interferences. The UO+ or UO2
+ secondary ions gave better count rates than U+ signal, and 

they gave atom ratios of 0.0025±0.0003 and 0.0046±0.0005 respectively. The average ratio 

is 0.00355±0.00058 which is indicative of DU.  

 

Summary and Conclusion  

The results showed that SIMS is an imaging technique that exhibits better sensitivity than 

microscopic SEM-EDX, particularly for studying the spatial distribution of elements in 

solid materials which is important in investigating adsorption. By using quantitative 

analysis of secondary ion images, based on element correlations, it was possible to group 

elements derived from different origins. The elements Fe, Cr, Ni and Mn derive from target 

material, K, Ca, Na and Al derive from costal soil, and U and Ti from the DU projectile. 

Measuring the uranium atom ratio by SIMS showed that uranium was depleted,  

confirming the isotopic composition can reveal the history and origin of nuclear materials.  

 

While SEM-EDX is useful in exploring homogeneity and in elemental mapping, its 

analytical capability is relatively limited. By utilizing the imaging capability, high spatial 

and mass resolution, and isotopic discrimination of TOF-SIMS, it is possible to obtain 

much more complementary detail through mapping major and trace elements within thin 

sections of DU particles, identifying elemental correlations, and measuring the isotopic 

composition of U.  
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Fig. S1 Correlation plot shows the relationship between Si and CH3. The 36 dots in the plot 
represent data collected from 36 areas (10 microns) covering almost the whole 64 x 64 
area.  
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Fig. S2 Element abundance vs. element abundance (counts) plots, showing correlation 
between different elements.  
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Table S1. Critical Values of the Pearson Product-Moment Correlation Coefficient  
 

df= n-2 Critical value (ρ= 0.05) df=n-2  Critical value (p= 0.05) 
1 0.997 19 0.433 
2 0.950 20 0.423 
3 0.878 21 0.413 
4 0.811 22 0.404 
5 0.754 23 0.396 
6 0.707 24 0.388 
7 0.666 25 0.381 
8 0.632 26 0.374 
9 0.602 27 0.367 
10 0.576 28 0.361 
11 0.553 29 0.355 
12 0.532 30 0.349 
13 0.514 35 0.325 
14 0.497 40 0.304 
15 0.482 45 0.288 
16 0.468 50 0.273 
17 0.456 60 0.250 
18 0.444 70 0.232 

 
df: degree of freedom ,  n: number of data points (sample size) 
 
This table is used to decide whether there a significant relationship between two variables  

or there is not. For example, if the number of data points used to study the relationships 

between two variables is n = 17, df = 15. If the correlation coefficient is larger than the 

critical value 0.482, this means there is a significant relationship between the two variables.  

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
238UO2+ Fe 
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Fig. S3 Areas of interest used for quantitative analysis.  
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Fig. S4 Relationship between Fe and Cr showing stronger correlation in Cr areas than Fe 
areas.   
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Fig.S5 Correlation between Fe and Al in Al, Fe and Cr areas 
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Fig. S6 Correlation between Ti and Al in Al, Fe and Cr areas 
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Chapter 5 

 

Biogeochemical Controls on the Corrosion of Depleted Uranium Alloy in 

Subsurface Soils 

 

The material in this chapter has been published in the journal Environmental 

Science and Technology.  

 
Environ. Sci. Technol., 2009, 43 (16), pp 6177–6182 
DOI: 10.1021/es901276e 
Publication Date (Web): July 16, 2009 
Copyright © 2009 American Chemical Society 

 

Candidate’s contribution was particle isolation and analysis.  

Soil from microcosms (field-moist and waterlogged) was screened using phosphor imaging 

analysis to isolate DU particles which were then analysed by SEM-EDX for size 

distribution, morphology and elemental composition. The field-moist soil contained 

sufficient quantities of DU particles which were analysed by X-ray powder diffraction 

(XRD) to determine the crystal structure of uranium. 
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Abstract 

Military activities have left a legacy of depleted uranium (DU) penetrator waste in the 

near-surface terrestrial environment. To understand the fate of this DU alloy, the 

mechanisms and controlling factors of corrosion need to be determined. In this study, field-

moist and waterlogged microcosms were used to investigate the effect of redox conditions 

and soil water content on the corrosion and fate of DU in subsurface soil, and the impact of 

corroding DU on the soil microbial population. The mechanism of corrosion and the 

corrosion products formed were highly dependent on the water status of the soil. Under 

field-moist conditions, DU corroded at a rate of 0.49 ± 0.06 g cm−2 y−1 and the main U 

input to surrounding soil was large metaschoepite [(UO2)8O2(OH)12·(H2O)10] particles. 

However, under waterlogged conditions the rate of corrosion was significantly slower at 

0.01−0.02 g cm−2 y−1 and occurred with the release of dissolved species to the surrounding 

environment. Corrosion ceases under reducing conditions, thus redox conditions are 

important in determining the persistence of penetrators in the environment. Corroding DU 

alters the redox conditions in the surrounding environment and both mechanisms of 

corrosion impact the microbial community. 

* Corresponding author e-mail: mkeith-roach@plymouth.ac.uk 
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Introduction  

Depleted uranium (DU) penetrators were used extensively during the 1991 Gulf War, the 

1999 Kosovo/Serbia conflicts, and the 2003 Iraq conflict (1). The 1991 Gulf War deposited 

approximately 321 tonnes of DU in the terrestrial environment (1), mainly consisting of 

whole penetrators and large fragments, since 70−90% of aircraft projectiles miss their 

targets (2). The depth that penetrators become embedded within the soil depends on the 

angle of impact and physical properties, with reported penetration depths of >2 m in denser 

clay soils (3) and 6−7 m in soft soils (4). 

Moisture content, O2 supply, pH, temperature, and microbial community influence soil 

corrosivity (5). Investigations into DU corrosion rates and products formed in soils have 

included in situ and laboratory studies. At two sites in an arid surface soil in the Mojave 

Desert, USA, U migration from corroding penetrators produced distinct layers (6, 7). The 

surface soil contained yellow-orange schoepite, whereas at 2−4 cm depth, yellow 

metaschoepite was observed, and below 4 cm, U was present as secondary U-silicate 

species (6, 7). At Kirkcudbright, UK, DU coupons were buried to 0.3 m depth in an 

organic, silty-clay soil and sampled over 4.4 years. Black and yellow corrosion products, 

characterized as uranium dioxide and schoepite, respectively, were observed on the DU 

coupons and in surrounding soil at the first sampling time (102 days), and corrosion rates 

over 4.4 years were 0.8−1.1 g cm−2 y−1 (8). In the laboratory, DU corrosion has been 

studied in two soils (sandy-loam and silty-loam) at 20 °C, with simulated rainfall (16 mm 

week−1). Black and yellow corrosion products formed, and there was negligible difference 

in corrosion rates for the two soils (0.19 ± 0.03 g cm−2 y−1) (9). 

The diffusion rates of O2 in soils range from 10−2 to 10−6 cm2 s−1 for dry and water-

saturated soils, respectively (10). Limited O2 diffusion into waterlogged soils results in 

anaerobic conditions in which microorganisms utilize alternative terminal electron 

acceptors (TEAs) for organic matter oxidation. The relative energy yields govern TEA 

utilization, giving rise to the “redox cascade” of O2, NO3
−, Mn(IV), Fe(III), SO4

2−, and CO2 

reduction. Corroding uranium is a strong reducing agent; this property together with 

hydrogen released during DU corrosion (11) may reduce TEA concentrations (12). 

Investigations into DU corrosion have not explicitly considered the effect of soil water 

content and redox processes on corrosion, leaving a level of uncertainty when predicting 

the fate of DU penetrators in the wide-ranging environments found in test-fire and war 

zones. Microcosm experiments have therefore been carried out to investigate the corrosion 

of DU penetrator materials in field-moist and progressively anoxic waterlogged soils, to 
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test the hypothesis that the rate of DU corrosion and the nature of corrosion products 

formed are dependent on the water content and local redox processes. 

Experimental Section 

  Sampling and Characterization  

A soil (silty-loam) from North Wyke Research Station, Devon (Lat: 50.777451°N Long: 

3.920402°W GB; 26.01.05) was sampled (10−40 cm depth), sieved (2 mm), stored (15 °C), 

and used within 6 months. Drain channel water collected at the same site was stored (4 °C) 

and used within 1 week. The full characterization protocols for soil and water subsamples 

have been described previously (12). 

 

  Microcosm Experiments  

Experiments were designed to investigate DU corrosion under realistic subsurface soil 

environments. The variations in water and O2 content generated three distinct subsurface 

environments, denoted as “field-moist”, “open waterlogged”, and “closed waterlogged”. 

DU from a penetrator (Dstl, Porton Down, UK) was cut into triangular “coupons” 

(triangular face of ca. 1.5 × 1.5 × 1.0 cm, thickness 0.5 cm; mass 5−10 g) by AWE 

(Aldermaston, UK). DU coupons were cleaned to remove cutting oil and surface 

contaminants (12). Microcosms consisting of 50 mL glass serum bottles and 15 g of soil 

were prepared on the same day. Waterlogged and field-moist conditions were simulated by 

adding 15 and 1 mL of drainage water, respectively. For the open systems (open 

waterlogged and field-moist), 15 microcosms containing a DU coupon were prepared, 

together with an equivalent number of controls without DU. A nylon mesh was tied around 

the neck of the open bottles to allow gas exchange. The microcosms were weighed 

monthly and water loss was compensated for by adding high purity water (MQ water, 

≥18.2 MΩ cm−1). For the closed waterlogged system, 30 microcosms containing a DU 

coupon were prepared, together with an equivalent number of controls. The microcosms 

were sealed with butyl stoppers and aluminum seals. A syringe needle was inserted through 

the stopper to prevent pressure build-up (none observed). All microcosms were incubated 

in the dark at 10 °C. 

At each time-point of interest over 510 days, microcosms were opened for analysis 

(“sacrificed”) and characterized in triplicate, along with three controls. To preserve redox 

conditions, sacrifices and further manipulations were carried out within an anaerobic 

chamber (95% N2, 5% H2). The closed systems were swirled for 15 min (200 rpm) to 

homogenize the sample and then sacrificed. For the open systems, the microcosms were 

weighed and adjusted to contain 15 mL of water by addition of deoxygenated MQ water, 
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sealed, homogenized, and sacrificed. The addition of deoxygenated MQ water to the field-

moist microcosms allowed the extraction of diluted pore-water. The entire contents of the 

microcosms were then filtered successively through nylon mesh (65 µm) and a disposable 

syringe filter (0.45 µm, mixed cellulose ester), and collected in polypropylene vials. The 

DU coupons, solution, and sediment were then prepared for further analysis as described 

below. All errors stated are one standard deviation of three replicate microcosms. 

 

   DU Coupon Analysis  

The DU coupons were rinsed with MQ water to remove soil, air-dried, and stored in a 

desiccator (<1 month). For a visual record, coupons were photographed under a light 

microscope fitted with a digital camera. The corrosion products were removed as described 

previously (12) and reweighed to determine mass loss (%). 

 

   Geochemical Methods and Modeling  

Apart from the adaptations stated here, all geochemical methods (pH, Eh, O2 

determination, redox indicator analysis; determination of colloidal and dissolved U in 

water) and modeling have been previously described (12). Acid-extractable Fe(II) was 

extracted from soils with 0.5 M HCl for 30 min (13) and determined 

spectrophotometrically (562 nm) using the ferrozine method (14). Accurately weighed 

subsamples of dried soil from the waterlogged microcosms on day 510 were refluxed with 

concentrated nitric acid for 8 h and analyzed for total U by inductively coupled plasma 

optical emission spectrometry (0.1 mg L−1 detection limit). 

 

   DU Distribution and Particle Analysis  

Soil from day 337 of each series of microcosms was screened using phosphor imaging 

analysis. Representative dried soil (1 g) was thinly spread onto a grid plate and a phosphor 

screen was placed directly above it for 8 h. The image was used to identify areas of 

enhanced radioactivity, which were isolated and analyzed by environmental scanning 

electron microscopy energy-dispersive X-ray (ESEM-EDAX). The field-moist soil 

contained sufficient quantities of crystalline U mineral particles for analysis by X-ray 

diffraction (XRD). 

 

  Microbiological Methods  

Field-moist and closed waterlogged samples and their controls were selected for microbial 

analysis to identify changes in the microbial community as a result of long-term (435 days) 

DU contamination. Ribosomal intergenic spacer analysis (RISA) was used to indentify 
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microbial community change. Further investigation by DNA sequencing of 16S rRNA 

gene clone libraries and phylogenetic analysis was also carried out. The methods used in 

this study have been described in detail previously (12). 

Results and Discussion 

Soil and Water Characterization  

The soil had a moisture content of 22% (m/m), a particle size distribution of 54% sand, 

41% silt, and 5% clay, organic carbon by mass of 12.0 ± 0.1%, CEC of 21.2 ± 0.4 meq/100 

g, and an initial inorganic carbon content of 80 ± 1 mg kg−1. Iron oxides comprised 6.0% 

(m/m) of the soil. The pH of the water prior to mixing with soil was 7.4, inorganic carbon 

content was 73 ± 2 mg L−1, and anion concentrations (mg L−1) were chloride 130 ± 2, 

nitrate 120 ± 2, and sulfate 10 ± 1. 

 

Impact of DU on Redox Processes in Field-Moist Soil  

In the field-moist microcosms pH (5.2−5.8) and Eh (500−600 mV) stayed constant over the 

510 day experimental period. Changes in redox indicator (NO3
−, Fe(II), SO4

2−) 

concentrations over time are shown in Figure 1. In the control microcosms, redox 

indicators were not reduced over the experimental period, suggesting oxic conditions were 

maintained. This is consistent with the visible, air-filled macro-pores in the soil structure. 

However, in the DU-amended experiments, depletion of NO3
− was observed from day 242 

(510 ± 70 mg L−1) to day 510 (17 ± 5 mg L−1), with concurrent in-growth of Fe(II) into 

soils. Sulfate in the DU-amended and control microcosms remained fairly constant 

throughout the experiment, indicating that SO4
2− reduction did not occur. This suggests that 

the presence of DU directly impacts soil redox processes, leading to reduction of TEAs. 
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Figure 1. DU-amended (×) and control (ο) redox indicator time series data for the 

subsurface field-moist (A,D,G), open waterlogged (B,E,H), and closed waterlogged (C,F,I) 

microcosms. Nitrate (A−C), acid extractable Fe(II) (D−F), and sulfate (G−I) concentrations 

are shown over time. Error bars ± 1 s.d. (n = 3). 

Impact of DU on Redox Processes in Waterlogged Soil  

Suboxic conditions developed in the open waterlogged microcosms and controls over time 

due to low diffusion rates of oxygen through waterlogged soil (10). Dissolved oxygen 

decreased from 84% initially to 35% by day 133. Eh decreased slightly from 610 to 570 

mV and pH slightly increased over the duration of the experiment, from pH 5.0 to 5.2 in 

the controls, and from pH 4.9 to 5.5 in the DU-amended experiments. Nitrate reduction, 

indicated by the decrease in NO3
− concentration, was observed in both the DU-amended 

experiments and controls after 69 days (Figure 1) although NO3
− was more depleted in the 

DU-amended microcosms. Iron(III) reduction was not observed and SO4
2− concentrations 

increased in both systems. 

The closed waterlogged microcosms and controls became progressively anoxic, with Eh 

decreasing from 610 to −170 mV by day 510. Dissolved oxygen was depleted from 85% 

initially to 5% by day 34, and pH increased over the 510 days from 4.9 to 6.5. Differences 

in redox indicator concentrations were observed over time between control and DU-

amended microcosms. Onset of NO3
− reduction was observed on day 34, and was complete 

by day 242 and 337 in the DU-amended microcosms and controls, respectively. In-growth 

of Fe(II) into soils was observed by days 242 and 337 for the DU-amended microcosms 

and controls, respectively. Sulfate initially increased in both the DU-amended and control 
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microcosms. After this initial increase, SO4
2− reduction was observed concurrently with 

Fe(III) reduction in the DU-amended and control microcosms between days 242 and 337, 

respectively. Thus, in both the waterlogged systems, the presence of DU increased the rate 

of progression through the redox cascade. An increased rate has also been observed in DU-

amended estuarine sediment microcosms (12). 

 

Corrosion of DU under Field-Moist Conditions  

Representative DU coupons from the field-moist microcosms are shown in Figure 2 after 

242 and 337 days incubation. DU coupons had visually corroded by day 242, via localized 

pitting and cracking of the metal surface and by day 337 the coupons were covered with 

protruding, predominately yellow corrosion products. Corrosion of DU, as indicated by % 

mass loss (Figure 3A), was not significant until day 242 (0.75 ± 0.20%; p = 0.0012), 

indicating a latent period prior to the onset of corrosion. After day 242, corrosion 

progressed linearly (r2 = 0.99) with a mass loss of 21% by day 510. The latent period could 

reflect the presence of a protective oxide layer. For pure U, this protective oxide layer will 

thicken and eventually crack at 75 nm, accelerating corrosion (11). Depletion of NO3
− and 

in-growth of Fe(II) occurred with the onset of DU corrosion. Corroding U is a strong 

reducing agent and generates H2 (11), thus these redox indicators may be reduced 

biotically, through stimulation of H2-reducing species, or abiotically (12). These induced 

changes in the redox processes did not influence the DU corrosion rate, which progressed 

linearly (R2 = 0.99). 
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Figure 2. Black and white photographs showing DU coupons retrieved from the field-

moist microcosm (A) after 242 days with a highlighted area (<) of pitting corrosion and a 

heavily corroded coupon (B) retrieved after 337 days. Also shown are DU coupons 

retrieved from the closed (C) and open waterlogged (D) microcosms after 337 days with 

highlighted areas (filled arrows) of pitting corrosion. 

 

Figure 3. Time series for DU corrosion in the field-moist (A,D), open waterlogged (B,E), 

and closed waterlogged (C,F) microcosms. A−C show mass loss (%) of DU metal from the 

DU coupon (◊) and D−F show changes in uranium concentration in the <0.45 µm (+) and 

<10 kDa ( ) fractions. Error bars ± 1 s.d. (n = 3). 
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Corrosion of DU under Progressively Reducing Waterlogged Conditions  

Representative DU coupons retrieved from the open and closed waterlogged microcosms 

on day 337 both showed shallow pitting (Figure 2). DU corrosion, indicated by % mass 

loss (Figure 3), was not significant for the open (p = 0.59) and closed (p = 0.43) 

waterlogged microcosms until days 133 and 69, respectively, which corresponded with 

NO3
−-reducing conditions. Once NO3

− reduction was complete (by days 337 and 242 for 

the open and closed waterlogged systems, respectively), % mass loss was similar (p = 0.84) 

at 0.36 ± 0.02% and 0.37 ± 0.08%, respectively. Concomitant DU corrosion and NO3
− 

depletion suggests the two processes are related. In fact, NO3
− reduction intermediates are 

reported to oxidize UO2 to more mobile U(VI) species (15). For the remaining 

experimental period, no significant corrosion was observed in the open (p = 0.10) and 

closed (p = 0.99) waterlogged microcosms. Therefore, corrosion in the waterlogged 

systems occurred during NO3
− reduction and ceased during Fe(III) and SO4

2− reduction. 

Similar redox controls on DU corrosion have been observed in estuarine sediments, with 

corrosion ceasing during SO4
2−-reducing conditions (12). In both studies the Eh/pH 

conditions were consistent with uraninite (UO2) formation and subsequent passivation of 

the metal surface (16). This demonstrates that soil/sediment and water character do not 

appear to influence DU corrosion under anoxic conditions. 

 

Rate of DU Corrosion as a Function of Redox Environment  

The corrosion rates (g cm−2 y−1) were calculated as described previously (12), but 

excluding the latent periods to increase accuracy and comparability. The time periods of 

corrosion used for calculations were: field-moist, days 242−510; open waterlogged, days 

69−337; closed waterlogged, days 33−133. Experimental uncertainties on replicate 

microcosms for both time points were used to estimate total uncertainties. When 

calculating coupon surface area, the slightly curved side of the coupon was assumed to be 

straight, introducing a ± 2% uncertainty. 

Corrosion was fastest in the field-moist microcosms (0.49 ± 0.06 g cm−2 y−1), intermediate 

between reported rates in soils exposed to 16 mm week−1 of simulated rainwater (0.19 ± 

0.03 g cm−2 y−1) (9) and the in situ rate at Kirkcudbright, UK (0.8−1.1 g cm−2 y−1) (8). 

Corrosion rates in the open and closed waterlogged systems were 0.0092 ± 0.0005 and 

0.020 ± 0.005 g cm−2 y−1, respectively. This corrosion occurred only under NO3
−-reducing 

conditions and was at least an order of magnitude slower than that in field-moist soils. 

Corrosion rates in the waterlogged soils were also lower than observed in waterlogged 

marine sediments (0.056 ± 0.006 g cm−2 y−1) (12) under suboxic conditions, highlighting 

the importance of chloride concentrations in DU corrosion (17, 18). 
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Total corrosion time for a 120 mm “Charm 3” penetrator was estimated using corrosion 

rate (g cm−2 y−1), approximate mass (4500 g), and mean surface area during corrosion (i.e., 

150 cm2) (12). Under field-moist soil conditions, the total corrosion time would be 55−69 

years. Under waterlogged soils, with NO3
−-reducing conditions, total corrosion times in 

open and closed systems would be 3100−3400 and 1200−1900 years, respectively. 

 

Corrosion Products and their Solubility  

DU coupons from the field-moist microcosms had loosely bound corrosion products. 

Phosphor imaging of the surrounding soil indicated a heterogeneous distribution of U with 

scattered intense radioactive hotspots (Figure S1, supporting information). These correlated 

with bright yellow corrosion products that were partially covered in soil. XRD analysis 

suggested the presence of metaschoepite or a similar phase, as previously reported (7). A 

representative ESEM image and EDAX spectrum of the selected particles are shown in 

Figure 4A-B. The image shows desiccation cracks, indicative of a partially dehydrated 

metaschoepite phase (7). The spectrum shows major U and O peaks and minor peaks from 

common matrix elements (Si, Fe, Mg, Al). In field-moist microcosms, dissolved U 

concentration correlated linearly with % mass loss (r2 = 0.96) (Figure 3). By day 510, only 

0.03% (16 ± 1 mg L−1) of the corroded U was in solution, following a 15 min water 

extraction, which reinforces the dominance and low solubility of the particulate corrosion 

products observed. Colloidal U oxides were not important in this system, since the U 

concentrations in the <0.45 µm and <10 kDa fractions were not significantly different (p = 

0.10). However, large particulate DU-oxides were observed and these would be naturally 

weathered in the environment. 
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Figure 4. ESEM images (A,C) and EDAX spectra (B,D) of a corroded DU particle 

retrieved from field-moist microcosm (A,B) and a soil particle from a closed waterlogged 

microcosm (C,D). 

DU coupons retrieved from the waterlogged soils had shallow pitting corrosion with no 

visible surface bound corrosion products. Phosphor imaging of the waterlogged systems 

indicated a dispersed, homogeneous distribution of U. A representative ESEM image and 

EDAX spectrum of selected soil particles are shown in Figure 4C,D. The spectrum shows 

minor U peaks and signals from Si, Fe, and Al. These results indicate that DU is present in 

the soil as sorbed species, rather than discrete corrosion products. Uranium concentrations 

in the <0.45 µm and <10 kDa fractions were not significantly different in the open (p = 

0.13) and closed waterlogged (p = 0.11) microcosms, indicating that colloidal U oxides 

were not important (Figure 3). By day 337, 0.36% and 0.37% of the DU had corroded in 

the open and closed waterlogged microcosms, respectively. This corresponded with a 

dissolved U concentration in the open waterlogged system of 0.12 ± 0.01 mg L−1 (<0.01% 

of the corroded DU), with pH 5.7, Eh 600 mV, and NO3
−-reducing conditions. In the 

closed waterlogged systems, the dissolved U concentration was 1.02 ± 0.47 mg L−1 (<0.1% 

of the corroded DU), with pH 6.4, Eh −65 mV, and Fe(III)- and SO4
2−-reducing conditions. 

Using the initial inorganic carbon concentrations, the geochemical model Hydra/Medusa 

(Puigdomenech, Royal Institute of Technology, Stockholm) suggests U will predominantly 

be in low solubility forms in both systems. In the open system, low solubility UO2CO3 
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would dominate, with some soluble species such as UO2(CO3)2
2− present. In contrast, 

reduced UO2 species would dominate in the closed system, with minor amounts of soluble 

species such as UO2(CO3)2
2−. Uranium soil extraction and water analyses show that by day 

510, all corroded DU was associated with the soil (100 ± 4%) rather than the DU coupon 

and <0.1% U was in the solution phase. This provides further evidence that under 

waterlogged conditions, corrosion occurs by oxidation of DU metal to dissolved uranyl 

species, with subsequent dispersion into the environment. This corrosion mechanism has 

been proposed previously for DU in marine sediments (12), suggesting that water status is 

a major controlling factor. 

 

Microbial Community Profile  

The microbial community analysis using RISA of the field-moist and closed waterlogged 

soils on day 435 indicated DU had impacted the microbial community (Supporting 

Information (SI), Figure 1). Detailed phylogenetic analysis was conducted by PCR 

amplification, cloning and sequencing of fragments (approximately 1 kb) of the 16S rRNA 

genes within the bacterial community (SI Tables 1−4). The phylogenetic results obtained 

from DNA profiling are shown in Figure 5. 

 

Figure 5. Phylogenetic affiliations of clones in field-moist (A,B) and the closed 

waterlogged (C,D) soils on day 435. Alpha, Beta, Delta, and Gamma represent 

proteobacterial divisions. 
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In the control field-moist soil, the clone library (55 clones analyzed, 15 RFLP types) was 

made up of a large number of novel, uncharacterized microorganisms, dominated by 

species of the Gammaproteobacteria genus Rhodanobacter (representing 38% and 44% of 

the 16S rRNA genes detected in the clone library, respectively). However, in the clone 

library from the field-moist DU-amended microcosm (55 clones analyzed, 20 RFLP types) 

the Gammaproteobacterial group was greatly reduced (consisting of 4% of the clones 

affiliated to Rhodanobacter species) while Gram-positive Bacilli, many of which can 

denitrify, dominated the clone library (48% of clones). The Bacilli phylogenetic class 

thrive in soil exposed to U3O8 (19) and at heavily contaminated U sites (20, 21). DU oxides 

(U3O8) have previously been shown to alter microbial community structures and reduce 

diversity (19), although reduced diversity was not shown in this system. The dominant 

organism detected in the DU impacted microbial community was closely related to 

Sporosarcina Soli strain I80 (98% match over 925 bases), characterized as Bacilli 

phylogenetic class, aerobic, and NO3
−-reducing microorganisms. 

In both the control and DU-amended waterlogged soils (Figure 5) the clone libraries were 

again dominated by a large number of novel uncharacterized microorganisms. In the DU-

amended microcosm a loss in microbial diversity was suggested (24 compared to 31 RFLP 

types from 57 clones analyzed from each soil); with the phylogenetic classes 

Alphaproteobacteria, Clostridia, Dehalococcoidete, Nitrospiro, and Sphingobacteria not 

detected in the presence of DU. They were replaced by other organisms, including 

Gammaproteobacteria (12% of clone library), comprising mostly an organism related to 

Aquicella siphonis, previously isolated from water samples in central Portugal (22). 

The different end-members identified in both the field-moist and waterlogged soils may 

arise from adaptation to the chemical environment associated with the DU, resistance to 

toxic soluble uranium and/or particulate corrosion products, or even direct use of the DU 

itself as an electron donor (23). In the system studied here the presence of metaschoepite 

corrosion product caused a marked shift in the microbial community composition, whereas 

the presence of dissolved U caused a marked decrease in microbial community diversity. A 

similar effect was reported in a waterlogged marine sediment system containing dissolved 

U (12). 

 

DU Corrosion as a Function of Soil Conditions  

This study shows that mechanisms of DU corrosion and the products formed in subsurface 

soils are controlled by redox processes and soil water content. In field-moist soil, the 

metaschoepite corrosion product observed is in agreement with other laboratory and in situ 
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studies (6-9). Under these conditions, DU corrodes at the fastest rate of 0.49 ± 0.06 g cm−2 

y−1, again broadly in agreement with literature data (8, 9), and is linear over time. 

In waterlogged soils the mechanism of U release is the same as in waterlogged marine 

sediments (12), showing that water status and redox processes control UO2 oxidation from 

the penetrator surface to mobile U(VI) species, and passivation of the metal surface as 

conditions become anoxic. DU corrosion has only been observed under NO3
−-reducing 

conditions in waterlogged soil and the corrosion rate correlated with the rate of NO3
− 

reduction. Comparison of these rates (0.01−0.02 g cm−2 y−1) with those in marine sediment 

(0.056 ± 0.006 g cm−2 y−1) (12) highlights that the corrosion mechanism is controlled by 

water status and redox processes but the corrosion rate is influenced by the chloride 

concentration. 

DU corrosion increased the rate of TEA utilization under all conditions investigated in this 

study and in a marine sediment (12). However, corroding DU impacts the microbial 

community in different ways under field-moist and waterlogged conditions, presumably 

due to the different corrosion products formed. The formation of predominantly 

metaschoepite corrosion products results in a shift in community structure, while the 

formation of predominantly soluble/ionic U species decreases diversity. 

Acknowledgment 

This research was funded by the Natural Environment Research Council (grant 

NE/C506799/1). We thank Dstl for supplying the DU penetrator, AWE for cutting this 

material, and North Wyke Research for soil and water samples. 

 

 

 

 

 

 



 115 

References 

1. Bleise, A.; Danesi, P. R.; Burkart, W. Properties, use and health effects of 

depleted uranium (DU): a general overview J. Environ. Radioact. 2003, 64, 93– 112 

2. Mellini, M.; Riccobono, F. Chemical and mineralogical transformations caused 

by weathering in anti-tank DU penetrators (“the silver bullets”) discharged during 

the Kosovo war Chemosphere 2005, 60, 1246– 1252 

3. Papastefanou, C. Depleted uranium in military conflicts and the impact on the 

environment Health. Phys. 2002, 83, 280– 282 

4. UNEP. Depleted uranium in Kosovo, Post-conflict environmental assessment; 

United Nations Environment Programme: Geneva, 2001. 

5. Mattsson, E. Basic Corrosion Technology for Scientists and Engineers; Ellis 

Horwood Limited: Chichester, 1989. 

6. Johnson, W. H.; Buck, B. J.; Brogonia, H.; Brock, A. L. Variations in depleted 

uranium sorption and solubility with depth in arid soils Soil. Sediment Contam. 

2004, 13, 533– 544 

7. Buck, B. J.; Brock, A. L.; Johnson, W. H.; Ulery, A. L. Corrosion of depleted 

uranium in an arid environment: Soil-geomorphology, SEM/EDS, XRD, and 

electron microprobe analyses Soil. Sediment Contam. 2004, 13, 545– 561 

8. Toque, C. C. L.; Baker, A. C. MOD DU program - The Corrosion of Depleted 

Uranium in the Kirkcudbright and Eskmeals Terrestrial Environments; Dstl report 

dstl/CR10978 V2.0; Alverstoke, 2006. 

9. Schimmack, W.; Gerstmann, U.; Schultz, W.; Geipel, G. Long-term corrosion 

and leaching of depleted uranium (DU) in soil Radiat. Environ. Biophys. 2007, 46, 

221– 227. 

10. Smith, K. A. A model of the extent of anaerobic zones in aggregated soils, and 

its potential application to estimates of denitrification J. Soil. Sci. 1980, 31, 263– 

277 



 116 

11. Laue, C. A.; Gates-Anderson, D.; Fitch, T. E. Dissolution of metallic uranium 

and its alloys J. Radioanal. Nucl. Chem. 2004, 261, 709– 717 

12. Handley-Sidhu, S.; Worsfold, P. J.; Boothman, C.; Lloyd, J. R.; Alvarez, R.; 

Livens, F.; Vaughan, D. J.; Keith-Roach, M. J. Corrosion and fate of depleted 

uranium penetrators under progressively anaerobic conditions in estuarine sediment 

Environ. Sci. Technol. 2009, 43, 350– 355 

13. Lovley, D. R.; Phillips, E. J. P. Availability of ferric iron for microbial 

reduction in bottom sediments of the freshwater tidal Potomac River Appl. Environ. 

Microbiol. 1986, 52, 751– 757 

14. Stookey, L. L. Ferrozine - a new spectrophotometric reagent for iron Anal. 

Chem. 1970, 42, 779– 781 

15. Senko, J. M.; Istok, J. D.; Suflita, J. M.; Krumholz, L. R. In-situ evidence for 

uranium immobilization and remobilization Environ. Sci. Technol. 2002, 367, 

1491– 1496 

16. Pourbaix, M.Corrosion. In Atlas of Electrochemical Equilibria in Aqueous 

Solution; Pourbaix, M., Ed.; Pergamon Press: Oxford, 1966. 

17. Trzaskoma, P. P. Corrosion rates and electrochemical studies of depleted 

uranium alloy tungsten fiber metal matrix composite J. Electrochem. Soc. 1982, 

192, 1398– 1402 

18. McIntyre, J. F.; Lefeave, E. P.; Musselman, K. A. Galvanic corrosion behaviour 

of depleted uranium in synthetic seawater coupled to aluminium, magnesium, and 

mild steel Corros. Sci. 1988, 44, 502– 510 

19. Ringelberg, D.; Reynolds, C.; Karr, L. Microbial community composition near 

depleted uranium impact points Soil. Sediment Contam. 2004, 13, 563– 577 

20. Pollmann, K.; Raff, J.; Merroun, M.; Fahmy, K.; Selenska-Pobell, S. Metal 

binding by bacteria from uranium mining waste piles and its technological 

applications Biotechnol. Adv. 2006, 24, 58– 68 

21. Selenska-Pobell, S.; Panak, P.; Miteva, V.; Boudakov, I.; Bernhard, G.; Nitsche, 

H. Selective accumulation of heavy metals by three indigenous Bacillus strains, B-



 117 

cereus, B-megaterium and B-sphaericus, from drain waters of a uranium waste pile 

FEMS. Microbiol. Ecol. 1999, 29, 59– 67 

22. Santos, P.; Pinhal, I.; Rainey, F.; Empadinhas, N.; Costa, J.; Fields, B.; Benson, 

R.; Ver ssimo, A.; da Costa, M. S. Gamma-proteobacteria Aquicella lusitana gen. 

nov., sp. nov., and Aquicella siphonis sp. nov. infect protozoa and require activated 

charcoal for growth in laboratory media Appl. Environ. Microbiol. 2003, 69, 6533– 

6540 

23. Lovley, D. R.; Phillips, E. J. P.; Gorby, Y. A.; Landa, E. R. Microbial reduction 

of uranium Nature 1991, 350, 413– 41 



 118 

Supporting information 

 

 

 

Figure S1. A representative phosphor image of field-moist soil showing the distribution of 

DU particles (black spots) in the sample.   

 

 

RISA profiles and tables containing the clone library DNA sequencing results. This 

material is available free of charge via the Internet at http://pubs.acs.org. 
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Summary and Conclusions 
 

 
The importance of radioactive particles as a source of radionuclides released into the 

environment has been known since the start of nuclear weapons tests, when micrometer 

particles were observed at the test sites. Since that time concern about the significance of 

environmental radioactive particles which can be released from different sources (e.g. 

nuclear accidents, nuclear fuel cycle, and the use of depleted uranium munitions) has 

increased. Characterisation of environmental radioactive particles helps in understanding 

their behaviour and fate in the environment as well as the environmental impact of these 

particles. 

 

 In this study, radioactive particles from two sources were identified and characterised 

using a wide range of microanalytical, analytical and radiometric techniques to obtain 

information on the particles.  

 

Depleted uranium particles produced from testing of DU projectiles against hard targets 

and corrosion of unfired DU metal buried in soil, were characterised in terms of size and 

shape, surface elemental composition, elemental and isotopic compositions and crystalline 

structure of uranium forms. Three classes of particles were identified: 

a) DU aerosols and fragments produced from firing impact. The particles are typically 

1-20µm diameter, composed mainly of uranium. 

b) Firing impact particles (fragments and molten particles), typically 200-500µm, 

composed of a mixture of uranium (as UO2 and U3O8) and iron from target 

material. SIMS analysis showed that they were composed of U and Ti derived from 

the DU projectile, Fe, Cr, Mn and Ni derived from target materials and Al, K, Mg, 

Ca, Na, Si as background elements.   

c) Sand grains up to 500µm, coated with corroding uranium in the form of 

metaschoepite. Microcosm experiments on corrosion of DU metal under field-moist 

conditions showed that corrosion rate is dependent on the water status and redox 

conditions, and the main input to the surrounding soil was metaschoepite particles.  

Precipitation of metaschoepite on surrounding sand grains is believed to be the 

mechanism limiting uranium mobility.  
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It was possible to identify and quantify DU contamination in particulate environmental 

samples by utilising the different isotopic signatures of natural and depleted uranium. The 

isotopic ratio 234U/238U was measured with higher precision using alpha spectrometry, 

whereas the isotopic ratio 235U/238U was measured with higher precision using ICP-MS.  

 

The results demonstrated the diversity of particles which can be formed through the use of 

DU munitions and the potential for these to persist in the environment. The small size of 

firing impact particles (particles of a size that may be respired) found in this study and in 

post-conflict environments may favour resuspension of these particles after deposition. 

This is especially true in arid environments (e.g. Iraq and Kuwait), where soil erosion by 

wind will redisperse DU aerosols particles in the conflict area and may redistribute them. 

The presence of uranium in firing impact particles in the non-leachable oxidation state (IV) 

reflects the potential for these particles to survive in the environment for many years, 

whereas the presence of uranium in corrosion particles in the soluble oxidation state (VI) 

suggests the potential dissolution of uranium as mobile UO2
2+.  

 

Nuclear fuel particles released from Sellafield effluent discharges and retained in intertidal 

salt mash sediments, were isolated using autoradiography and heavy liquid density 

separation and characterised in terms of morphology, surface elemental composition, 

radionuclide composition and isotopic composition of uranium and plutonium. The 

particles were typically 1-20 µm size, composed mainly of uranium, although alpha 

spectrometry showed that the particles have been irradiated, and transuranium 

radionuclides (Pu, Am and Cm) can be identified in them. The isotopic composition of Pu, 

represented by the activity ratio 238Pu/239+240Pu, was consistent with that from Sellafield 

discharges and the isotopic composition of U, represented by the atom ratio 235U/238U 

showed that uranium was depleted, suggesting that U was derived from the reprocessing of 

spent fuel at Sellafield. 

 

 The results demonstrated conclusively the persistence for some decades of irradiated 

nuclear fuel particles in the marine and estuarine environments, which suggests that 

uranium is present in the low solubility oxidation state IV. This is consistent with studies 

of DU firing impact particles which were found to survive in the environment for many 

years, and with the observation of Handley et al (2009) that DU weathering ceases under 

anaerobic conditions.  
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The work in this thesis demonstrated that a variety of analytical techniques can be 

successfully applied to the study of environmental radioactive particles. Autoradiography 

and density separation were useful to find and isolate individual particles in soil samples. 

SEM-EDX provided information on size, morphology and surface composition of 

particles, while XRD was used to assist in determining the crystal structure of uranium 

phases. ICP-AES quantified stable elements, SIMS revealed the internal chemistry and 

ICP-MS and alpha spectrometry assessed DU contamination in particulate environmental 

samples.  

 

The information obtained on radioactive particles in this thesis made it possible to assess 

the origin, fate, and environmental behaviour and impact of actinide-containing particles in 

the environment.  
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Suggestions for future work 

 

In order to gain better understanding of the environmental behaviour of radioactive 

particles, more information on their physicochemical characteristics should be obtained. 

Other analytical techniques, such as transmission electron microscopy (TEM), could 

provide information on particle phases and homogeneity, structural composition and 

oxidation states of uranium. An attempt was made to analyse nuclear fuel particles using 

TEM, but the difficulty in separating these tiny particles (1-20 µm) from the clay sediment 

and the scarce of particles in the sample, led to the situation where the particle is being lost 

or placed on the TEM grid in a way (embedded in matrix) which was not suitable for 

analysis. A similar problem was faced when analysing the particles with SIMS, where the 

particle was not exposed enough for analysis as it was embedded in the resin. Ultrasonic 

dispersion to break up the matrix, could help in further attempts to isolate individual 

particles. The first class of DU particles (1-20 µm) could be analysed by TEM, as they are 

easy to separate from sand and more abundant. 

  

In this study, nuclear fuel particles from the middle section of sediment core sample 

(reflects 1970s discharges) were investigated. It would be interesting to characterise 

particles from the bottom and top sections, which reflect discharges before and after the 

1970s.   

 

The information obtained on DU particles in this study can be used to inform assessments 

of battlefield environments. It would be interesting to analyze DU samples from post-

conflict environments (e.g. the Gulf War area) using the same characterization techniques 

applied in this study and compare the results with that from Eskmeals firing test range.  

 

It would be useful to investigate radioactive particles from other sources (e.g. Chernobyl) 

to assess the environmental behaviour of radioactive particles from different nuclear 

sources.  
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Experimental Techniques 

 

 

A) Particle separation  

Environmental radioactive particles are generally embedded in a bulk matrix, therefore, it 

is necessary to isolate them and perform specific single grain analysis. Ionising radiation 

emitted by radioactive particles can be detected by radiation-sensitive sensors, so they can 

be localized in the soil samples as "hot spots" using direct imaging techniques. Actinide-

containing particles are dense particles; therefore they can be separated from soil matrix by 

density separation.   

 

1. Autoradiography  

Autoradiography provides a map of the distribution of radioactive particles in a sample. 

The map of the radioactivity emitted by a sample is obtained by placing a sample in contact 

with a storage phosphor screen that is sensitive to various forms of radiation (mainly beta 

and gamma), alpha radiation can be differentiated from other radiations as a function of 

phosphor screen thickness (Cheng et al., 1996). After exposing the screen over a sufficient 

length of time (the longer exposure the time, the better the image resolution), the screen 

can then be read by scanning with laser light. The resulting image can be used to map out 

the distribution of radioactive particles and then locate them quite precisely based on the 

obtained image.   

 

Storage phosphor screens are typically coated with a lanthanide complex, such as 

BaFBr:Eu2+.  Incident radiation excites an electron from the Eu2+ ion’s valence band into 

the conduction band.  This effectively frees the electron from the original ion and transfers 

it to the BaFBr complex, causing an oxidation of Eu2+ to Eu3+.  The excited BaFBr 

complex absorbs strongly at ~600nm, and irradiation with laser light (λ = 633 nm) returns 

the electron to the Eu3+ ion, causing reduction back to an excited state of Eu2+*.  This 

decays to ground state Eu2+ by releasing a photon of wavelength 390 nm (in the near UV 

part of the spectrum). The photostimulable luminescence (PSL) is measured and stored 

digitally in relation to the position of a scanning laser beam. Once the whole plate has been 

scanned, the distribution of radioactive particles is displayed on screen as an image 

(Johnston et al., 1990).  This technique can also be used to estimate the particle activity 

which is proportional to PSL signal and exposure time (Koarashi et al., 2007).  
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An example of an autoradiograph of a soil sample containing radioactive particles is shown 

below (Figure 1). 

 

 
 

Figure 1. Autoradiograph of a sample showing hot spots. Black spots represent depleted 
radioactive particles particles.   

 
 

2. Heavy liquid density separation  

Heavy liquids are dense fluids or solutions used to separate materials of different density 

through their buoyancy. In the mineral industry, heavy liquids are commonly used in the 

laboratory to separate the light minerals such as quartz and clay from the heavy minerals. 

Because heavy minerals have a high density (~ 5-10 g/cm3) higher than that of bulk soil (~ 

2.5 g/cm3), separation in a heavy liquid provides a suitable method of preconcentration. 

The heavy liquid density used for this type of separation is about 2.85 g/ml. 

All organic heavy liquids have problems with toxicity; and have therefore been substituted 

with low-toxic tungsten based heavy liquids such as LST fast float lithium 

hetropolytungstate, density 2.83 g/cm3, which was used in this study to separate uranium 

oxide particles from soil.  

Uranium oxide particles with a density of about 10 g/cm3 are much denser than soil matrix, 

therefore they can be separated using LST. The separation of these particles from soil 

presents problems due to their fine particle size and adhesive nature of clay soil which 

causes flocculation.  

Approximately 1g of dry clay sediment was hand ground using a pestle and mortar to a 

powder of < 200 µm. The material is transferred into a separating funnel and the heavy 

liquid is added. The funnel is then shaken to disperse the particles and left to permit light 

particles to float and heavy particles to sink (Figure 2). The heavier particles are transferred 
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into a 10 ml vial, then washed with deionized water, filtered and left to dry for further 

analysis. 

 

Figure 2. Heavy liquid density separation with heavy particles in the bottom and soil 

matrix floating on top.   

The small size of the desired particles and the adhesive nature of the clay soil make density 

separation difficult.  

B) Electron microscopy and X-ray analysis  
 
When the environmental impact of radioactive particles is assessed, information is needed 

on particle size distribution, morphology and crystal structure, and oxidation states of 

uranium which influence particle weathering and subsequent mobility and solubility of 

uranium, when in contact with soil-water system (Salbu et al., 1998). Electron microscopy 

is used to obtain information on particle size, morphology and elemental composition, and 

X-ray diffraction to determine the crystal structure.  

 
1. Scanning electron microscopy equipped with energy dispersive X-ray analysis (SEM-
EDX) 

 
Electron microscopy is a technique that is used to gain information about the physical 

nature and chemical composition of the surface of solid materials. A variety of signals is 

produced when an electron beam interacts with a solid sample (Figure 3). Three signals are 

measured in SEM, providing different information about the sample.  
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Figure 3. The different signals produced by interaction of electron beam with solid sample. 

 

1) Secondary electrons (SE): low energy electrons (~ 50 eV) generated by inelastic 

collisions of primary electron with atoms within the sample. They provide 

information on the morphology and surface topography of the sample. 

2) Backscattered electrons (BSE): high energy electrons from the electron beam, 

deflected as a result of Coulombic interaction with the nucleus. The production of 

backscattered electrons is dependant on atomic number of elements in the sample. 

High atomic number elements (strong scatterers) appear as bright areas in BSE 

images. 

3) X-Ray emission: characteristic X-ray is specific for an element in the sample and 

X-ray spectrum provides compositional information of the sample. 

 

A scanning electron microscope (FEI XL30 ESEM) equipped with energy dispersive X-ray 

analysis (SEM-EDX), was used to obtain information on size, morphology and 

composition of particles. The samples were prepared by fixing the particles (dense particles 

separated by heavy liquid or soil particles which had been shown by autoradiography to 

contain radioactive particles) on sticky carbon pads stuck on aluminium stubs (12 mm dia) 

suitable for SEM analysis. SEM was used in backscattered mode to search for high atomic 

number elements (uranium) as bright spots. When a uranium particle is identified, the BSE 

and SE images are collected and the qualitative elemental composition is determined by 

acquiring EDX spectra of spots or areas on particle surface. Detection limits for EDX 

analysis are variable but typically 0.2 -0.5%.  

 

 

 

 

Cathodoluminescence 
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2. X-ray diffraction (XRD) 

XRD is a technique that can be used to reveal the atomic structure of a crystalline solid. 

When a crystal is bombarded with X-rays of a fixed wavelength (similar to the spacing 

between crystal lattice planes) and at certain incident angles, intense reflected X-rays are 

produced when the wavelengths of the scattered X-rays interfere constructively. In order 

for the waves to interfere constructively, the differences in the travel path must be equal to 

integer multiples of the wavelength. When this constructive interference occurs, a 

diffracted beam of X-rays will leave the crystal at an angle equal to that of the incident 

beam. The process is described by Bragg’s Law: n λ = 2d sinθ  

Where n (an integer) is the order of diffraction, λ is the wavelength of the incident X-rays, 

d is the spacing of the crystal and θ is the angle of incidence. Figure 4 illustrates the 

parameters in the Bragg’s law equation. 

 

 

Figure 4. Bragg's Law diffraction. The arrows are the incident and diffracted X-rays, the 

horizontal lines are lattice planes, d is the lattice spacing and θ is the diffraction angle.  

 

An X-ray diffractometer (Xcalibur-2 with Sapphire-3 CCD detector, MoKα radiation λ = 

0.071 nm, beam size approximately 300 µm) was used to identify the crystal structure of 

uranium phases in the particles. Powder diffraction patterns were collected from single 

particles by mounting the particle on the tip of a thin glass fibre and X-rays are directed 

onto all sample orientations (0o, 90o, 180o, 270o). The diffracted X-rays are collected by the 

CCD detector (at 2θ from 0o to 35o) to produce a diffraction pattern which is then matched 

with a reference pattern.  
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C) Atomic and mass spectrometric techniques  

The capability of determining elemental and isotopic composition of materials at the trace 

and ultra trace level is the main feature of atomic and mass spectrometry. The 

measurement of isotopic ratios of radionuclides (e.g. U and Pu) released into the 

environment is essential to identify their origin and monitor contamination. Elemental 

composition analysis of environmental radioactive particles is required qualitatively and 

quantitatively to understand the chemical weathering of these particles in the environment.  

 

1. Inductively coupled plasmas-atomic emission spectroscopy/mass spectrometry (ICP-
AES/MS) 
 
ICP-AES utilizes a plasma (~ 10000 K) as atomization and excitation source. The ICP 

source consists of a torch that contains a plasma stream of an inert gas (usually argon) that 

is maintained via an induction radio-frequency coil, which is wrapped around the ICP 

torch. The sample is introduced into the flowing gas stream and the resultant plasma passes 

through the region surrounded by the induction coil in the form of a spray.  The steps 

involved in the analysis of a liquid sample by ICP-AES are explained in Figure 5.  

 

A VG Horizon ICP-AES was used to measure the concentrations of U and a range of stable 

elements (Fe, Ti, W, Cr, and B) in solutions of dissolved DU particles. The precision of 

ICP-AES measurements was verified by analysing standards (0.01, 0.05, 0.1 and 1 mg/l) of 

each element before and at the end of the measurements, and all elements were recovered 

within ± 4%. Detection limits of the elements analysed are shown in Table 2.  
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Figure 5. Steps involved in the analysis of a liquid sample by ICP-AES (Manning and 
Grow, 1997).  
 
 
In mass spectrometry, an ICP source is used again as an ionization source. However, in 

contrast to ICP-AES, the plasma is used to ionize the sample and the ions are separated and 

measured by a mass spectrometer according to their mass to charge ratios. A Quadrupole 

mass analyser is used to separate different ions and electron multiplier detector to measure 

them.  ICP-MS (Plasma Quad PQII) manufactured by VG elemental (Winsford, Cheshire, 

UK), was used in standard conditions (Table 1) to determine the isotopic composition of U.   

The analytical quality of ICP-MS was checked by analysing uranium calibration standards 

(10 ppb, 50ppb, and 100ppb, dilutions of a certified Johnson Matthey uranium solution 

1000 ± 3 ppm) before and after running the samples. The mean error of the measurements 

was 0.91% and 4.59% for the measured atom ratios 235U/238U and 234U/238U respectively. 

Detection limits of the elements analysed are shown in Table 2.  

 

 

 

1- Sample preparation includes 
treatment with acids, heating or 
microwave digestion.  

 
 
2- Nebulization: liquid converted to 

aerosols. 
 
 

3- Desolvation/volatization: water is 
driven off, and remaining liquid and 
solid converted to gases. 

 
 
4- Atomization: gas phase bonds are 

broken by plasma temperature and 
only atoms are present.  

 
5- Excitation/ emission: atoms gain 

energy from collisions and emit 
light of a characteristic wavelength.  

 
6- Separation/ detection: A grating 

disperses the light that is 
quantitatively measured. 

Liquid sample  
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Table 1. Parameters of ICP-MS 

 
Incited power/W 1350 

Reflected power/W < 0.1 

Coolant gas flow/ 1 min-1 13.5 

Auxiliary gas flow/ 1 min-1 1.0 

Nebuliser gas flow rate /min-1 0.82 

Impact bead spray chamber temperature /°C 10 

Total acquisition time/s  37, repeated 3 times for each sample  

Detection mode  Pulse counting  

 

Table 2. Detection limits for the elements analysed by ICP-MS and ICP-AES 

 

Element Detection limit (ppb) 

ICP-AES 

Detection limit (ppb) 

ICP-MS 

U 15 0.0005 

Fe 2 0.002 

Ti 0.4 0.001 

W 8 0.001 

Cr 2 0.0005 

B 0.8 0.05 

 

2. Secondary Ion Mass Spectrometry (SIMS) 

Secondary ion mass spectrometry is an analytical technique that can be used to characterise 

the surface and near surface (~ 30 µm) region of solid samples. The technique uses an 

energetic primary ion beam (e.g. O2
+, Cs+, Au+, 1-30 keV), which hits the surface of the 

sample, an energy transfer occurs between the ions from the beam and the atoms of the 

first few monolayers of the sample. Cascades of collisions then happen in the solid and 

many species (e.g. single and multiple charged ions, clusters of several atoms and neutrals) 

are formed by the interaction of the beam with the sample (Figure 6), but the positive and 

negative ions are the species of interest for SIMS. The sputtered secondary ions provide 

information about the elemental, isotopic and molecular composition of the material, and 

they are detected by a mass spectrometer. 
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Figure 6. Ion beam sputtering. (Source: http://www.cea.com/cai/simstheo/caistheo.htm)  

 

Depending on the analytical application, different kind of m/z analysers can be applied to 

perform the mass separation. In the first generation of SIMS, magnetic sector analysers 

were used. Later on, double-focusing, quadrupole and time-of-flight (TOF) analysers have 

been applied. TOF analysers are used with secondary ion beams that are generated in short 

pulses. Ions are accelerated into a drift tube in which the ions are separated according to 

the time taken to traverse the drift space. When ions have the same energy, heavier ions 

take longer to reach the detector than do lighter ones.  

 

The detection of the secondary ions can be done either by counting the ions (electron 

multiplier or Faraday cup) or using ion sensitive imaging detectors (microchannel plate/ 

Fluorescent screen or resistive anode encoder). Ion imaging shows secondary ion 

intensities as a function of location on sample surface. Image dimensions vary from 1 µm 

to 500 µm.  

 

D) Radiometric techniques 

As radionuclides emit various types of radiation (alpha, beta and gamma) which can be 

detected by radiation sensitive detectors, radiometric methods such as alpha or gamma 

spectrometry and liquid scintillation counting can be applied to identify radioisotopes and 

measure their activity. The shorter the half-life of radionuclide, the higher the specific 

activity, therefore, radiometric methods are more sensitive for short-lived radionuclides, 

whereas mass spectrometric techniques are more sensitive for long-lived radionuclides. 

Alpha spectrometry can be used to determine the radionuclide and isotopic composition 

which is useful to identify the origin of radionuclides and the nature of the nuclear fuel.  
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Alpha and Gamma spectrometry  

Sources emitting alpha particles and/or gamma rays can be counted using alpha or gamma 

spectrometer which is based on a semiconductor detector made of Ge or Si. A band 

structure exists in the semiconductor crystal, with a band gap of about 1.1 eV for Si and 

0.66 eV for Ge. The passage of ionizing radiation injects enough energy into the system to 

raise electrons from the valence band to the conduction band, creating electron-hole pairs 

(Figure 7). The hole and the electron can migrate through the crystal in response to an 

electric field applied on the semiconductor, producing an electrical signal which is 

amplified and transported to the ancillary counting equipment. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Band structure of a semiconductor detector 

 

Alpha spectrometry was used to identify radionuclide composition of nuclear fuel particles 

and measure the activity ratios 234U/238U and 238Pu/239+240Pu. Alpha sources were prepared 

after radiochemical separation and counted using a PIPS type Si detector (Canberra, 

Belgium, model A 450 – 18 AM), counting efficiency 20-25%. Counting time was variable 

depending on sample activity. Detection limit is about 0.5 m Bq.  
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The signal is converted to a 

digital form, and then stored in 

the memory of a multichannel 

analyser (MCA) to give a sample 

spectrum. The number of 

electron-hole pairs created is 

proportional to the energy 

dissipated in the detector crystal 

by ionizing radiation (Ehmann 

and Vance, 1991). 
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