136 research outputs found
Accelerated materials design approaches based on structural classification: Application to low enthalpy high pressure phases of SH<sub>3</sub> and SeH<sub>3</sub>
We propose a methodology that efficiently ass-eses major characteristics in the energy landscape for agiven space of configurations (crystal structures) underpressure. In this work we study SH3 and SeH3, both of fun-damental interest due to their superconducting properties.Starting from the crystal fingerprint, which defines config-urational distances between crystalline structures, we in-troduce an optimal one dimensional metric space that isused to both classify and characterize the structures. Fur-thermore, this is correlated to the electronic structure. Ouranalysis highlights the uniqueness of the Im-3m phase of H3S and H33Se for superconductivity. This approach isan useful tool for future material design applications
Extracting galactic binary signals from the first round of Mock LISA Data Challenges
We report on the performance of an end-to-end Bayesian analysis pipeline for
detecting and characterizing galactic binary signals in simulated LISA data.
Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM)
algorithm, which has been optimized to search for tens of thousands of
overlapping signals across the LISA band. The BAM algorithm employs Bayesian
model selection to determine the number of resolvable sources, and provides
posterior distribution functions for all the model parameters. The BAM
algorithm performed almost flawlessly on all the Round 1 Mock LISA Data
Challenge data sets, including those with many highly overlapping sources. The
only misses were later traced to a coding error that affected high frequency
sources. In addition to the BAM algorithm we also successfully tested a Genetic
Algorithm (GA), but only on data sets with isolated signals as the GA has yet
to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin,
Dec. '06
Arm Locking for the Laser Interferometer Space Antenna
The Laser Interferometer Space Antenna (LISA) mission is a planned gravitational wave detector consisting of three spacecraft in heliocentric orbit. Laser interferometry is used to measure distance fluctuations between test masses aboard each spacecraft to the picometer level over a 5 million kilometer separation. Laser frequency fluctuations must be suppressed in order to meet the measurement requirements. Arm-locking, a technique that uses the constellation of spacecraft as a frequency reference, is a proposed method for stabilizing the laser frequency. We consider the problem of arm-locking using classical optimal control theory and find that our designs satisfy the LISA requirements
Time Domain Simulations of Arm Locking in LISA
Arm locking is a technique that has been proposed for reducing laser
frequency fluctuations in the Laser Interferometer Space Antenna (LISA), a
gravitational-wave observatory sensitive in the milliHertz frequency band. Arm
locking takes advantage of the geometric stability of the triangular
constellation of three spacecraft that comprise LISA to provide a frequency
reference with a stability in the LISA measurement band that exceeds that
available from a standard reference such as an optical cavity or molecular
absorption line. We have implemented a time-domain simulation of arm locking
including the expected limiting noise sources (shot noise, clock noise,
spacecraft jitter noise, and residual laser frequency noise). The effect of
imperfect a priori knowledge of the LISA heterodyne frequencies and the
associated 'pulling' of an arm locked laser is included. We find that our
implementation meets requirements both on the noise and dynamic range of the
laser frequency.Comment: Revised to address reviewer comments. Accepted by Phys. Rev.
LISA data analysis I: Doppler demodulation
The orbital motion of the Laser Interferometer Space Antenna (LISA) produces
amplitude, phase and frequency modulation of a gravitational wave signal. The
modulations have the effect of spreading a monochromatic gravitational wave
signal across a range of frequencies. The modulations encode useful information
about the source location and orientation, but they also have the deleterious
affect of spreading a signal across a wide bandwidth, thereby reducing the
strength of the signal relative to the instrument noise. We describe a simple
method for removing the dominant, Doppler, component of the signal modulation.
The demodulation reassembles the power from a monochromatic source into a
narrow spike, and provides a quick way to determine the sky locations and
frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
Preliminary LISA Telescope Spacer Design
The Laser Interferometric Space Antenna (LISA) mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of approximately 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. This poster describes the requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution,layout options for the telescope including an on- and off-axis design, and plans for fabrication and testing
eLISA Telescope In-field Pointing and Scattered Light Study
The orbital motion of the three spacecraft that make up the eLISA Observatory constellation causes long-arm line of sight variations of approximately one degree over the course of a year. The baseline solution is to package the telescope, the optical bench, and the gravitational reference sensor (GRS) into an optical assembly at each end of the measurement arm, and then to articulate the assembly. An optical phase reference is exchanged between the moving optical benches with a single mode optical fiber (backlink fiber). An alternative solution, referred to as in-field pointing, embeds a steering mirror into the optical design, fixing the optical benches and eliminating the backlink fiber, but requiring the additional complication of a two-stage optical design for the telescope. We examine the impact of an in-field pointing design on the scattered light performance
Characterization of Photoreceivers for LISA
LISA will use quadrant photo receivers as front-end devices for the phase meter measuring the motion of drag-free test masses in both angular orientation and separation. We have set up a laboratory testbed for the characterization of photo receivers. Some of the limiting noise sources have been identified and their contribution has been either measured or determined from the measured data. We have built a photo receiver with a 0.5 mm diameter quadrant photodiode with an equivalent input noise of better than 1.8 pA/(square root of)Hz below 20 MHz and a 3 dB bandwidth of 34 MHz
CFRP Dimensional Stability Investigations for Use on the LISA Mission Telescope
The Laser Interferometer Space Antenna (LISA) is a mission designed to detect low frequency gravitational-waves. In order for LISA to succeed in its goal of direct measurement of gravitational waves, many subsystems must work together to measure the distance between proof masses on adjacent spacecraft. One such subsystem, the telescope, plays a critical role as it is the laser transmission and reception link between spacecraft. Not only must the material that makes up the telescope support structure be strong, stiff and light, but it must have a dimensional stability of better than 1 pm Hz(exp -1/2) at 3 mHz and the distance between the primary and the secondary mirrors must change by less than 2.5 micron over the mission lifetime. CFRP is the current baseline materiaL however, it has not been tested to the pico-meter level as required by the LISA mission. In this paper we present dimensional stability results, outgassing effects occurring in the cavity and discuss its feasibility for use as the telescope spacer for the LISA spacecraft
Unilateral Maxillary First Molar Extraction in Class II Subdivision:An Unconventional Treatment Alternative
The asymmetrical intra-arch relationship in Class II subdivision malocclusion poses challenges in the treatment planning and mechanotherapy of such cases. This case report demonstrates a treatment technique engaging unilateral extraction of a maxillary first molar and Begg fixed appliances. The outcome stability and the enhancing effect on the eruption of the third molar in the extraction segment were confirmed by a 4-year follow-up examination
- …