96 research outputs found

    Wage returns to university disciplines in Greece: are Greek Higher Education degrees Trojan Horses?

    Get PDF
    This paper examines the wage returns to qualifications and academic disciplines in the Greek labour market. Exploring wage responsiveness across various degree subjects in Greece is interesting, as it is characterised by high levels of graduate unemployment, which vary considerably by field of study, and relatively low levels of wage flexibility. Using micro-data from recently available waves (2002-2003) of the Greek Labour Force Survey (LFS), the returns to academic disciplines are estimated by gender and public/private sector. Quantile regressions and cohort interactions are also used to capture the heterogeneity in wage returns across the various disciplines. The results show considerable variation in wage premiums across the fields of study, with lower returns for those that have a marginal role to play in an economy with a rising services/shrinking public sector. Educational reforms that pay closer attention to the future prospects of university disciplines are advocated

    Strategies to control therapeutic antibody glycosylation during bioprocessing: synthesis and separation.

    Get PDF
    Glycosylation can be a critical quality attribute (CQA) in biologic manufacturing. In particular, it has implications on the half-life, immunogenicity and pharmacokinetics of therapeutic monoclonal antibodies (mAbs) and must be closely monitored throughout drug development and manufacturing. To address this, advances have been made primarily in upstream processing, including mammalian cell line engineering to yield more predictably glycosylated mAbs, and the addition of media supplements during fermentation to manipulate the metabolic pathways involved in glycosylation. A more robust approach would be a conjoined upstream-downstream processing strategy. This could include implementing novel downstream technologies, such as the use of Fc gamma-based affinity ligands for the separation of mAb glycovariants. This review highlights the importance of controlling therapeutic antibody glycosylation patterns, the challenges faced in terms of glycosylation during mAb biosimilar development, current efforts both upstream and downstream to control glycosylation and their limitations, and the need for research in the downstream space in order to establish holistic and consistent manufacturing processes for the production of antibody therapies. This article is protected by copyright. All rights reserved

    Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins.

    Get PDF
    Genomic integrity is maintained by a network of cellular activities that assess the status of the genome at a given point in time, provide signals to proceed with or halt cell cycle progression, and provide for repair of damaged DNA. Mutations in any part of these pathways can have the ultimate effect of disturbing chromosomal integrity. Recent work suggests that p53 performs this integrator function in mammalian cells. Our present study demonstrates that in mortal cells, the expression of E6 and E7 viral oncoproteins of type 16 human papillomavirus each disrupts the integration of these signals by diverged pathways. Cells expressing E6 protein, which binds and degrades the p53 protein, exhibited alterations in cell cycle control when placed in drug and displayed the ability to amplify the CAD gene. The expression of E7, which binds different cellular proteins important for transformation, including Rb, led to a p53-independent alteration in cell cycle control, a widespread cytocidal response, and polyploidy as a mechanism of drug resistance. These results demonstrate that diverse perturbations of molecular pathways can have different effects on chromosomal integrity

    Homogeneous Bispecifics by Disulfide Bridging

    Get PDF
    We report on a chemical platform to generate site-specific, homogeneous, antibody-antibody conjugates by targeting and bridging disulfide bonds. A bispecific antibody construct was produced in good yield through simple reduction and bridging of antibody fragment disulfide bonds, using a readily synthesized bis-dibromomaleimide cross-linker. Binding activity of antibodies was maintained, and in vitro binding of target antigens was observed. This technology is demonstrated through linking scFv and Fab antibody fragments, showing its potential for the construction of a diverse range of bispecifics

    Human chromosome 11 contains two different growth suppressor genes for embryonal rhabdomyosarcoma.

    Get PDF
    The identification of acquired homozygosity in human cancers implies locations of tumor suppressor genes without providing functional evidence. The localization of a defect in embryonal rhabdomyosarcomas to chromosomal region 11p15 provides one such example. In this report, we show that transfer of a normal human chromosome 11 into an embryonal rhabdomyosarcoma cell line elicited a dramatic loss of the proliferative capacity of the transferrants. Indeed, the majority of the viable microcell hybrids had either eliminated genetic information on the short arm of the transferred chromosome 11 or increased the copy number of the rhabdomyosarcoma-derived chromosomes 11. Cells that possessed only the long arm of chromosome 11 also demonstrated a decreased growth rate. In contrast, all microcell hybrids retained the ability to form tumors upon inoculation into animals. These functional data support molecular studies indicating loss of genetic information on chromosome 11p15 during the development of embryonal rhabdomyosarcoma. In addition, our studies demonstrate the existence of a second gene on the long arm, previously unrecognized by molecular analyses, which negatively regulates the growth of embryonal rhabdomyosarcoma cell lines

    Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging

    Get PDF
    s funded by the Seventh Framework Programme (FP7) for HER Imaging and Molecular Interaction Mapping in Breast Cancer (Imagint EC grant 259881) and the Breast Cancer Campaign. The research was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre
    corecore