62 research outputs found

    Antroquinonol Exerts Immunosuppressive Effect on CD8 +

    Get PDF
    Antroquinonol was investigated as antioxidant and inhibition of inflammatory responses. Our study was to evaluate its immunosuppressive effect on CD8+ T cells and protective effect on depigmentation. CD8+ T cells were treated with antroquinonol in vitro, and C57BL/6 mice were treated with antroquinonol with or without H2O2 in vivo for 50 consecutive days. We found antroquinonol could inhibit proliferation of CD8+ T cells and suppress the production of cytokines IL-2 and IFN-γ and T cell activation markers CD69 and CD137 in vitro. H2O2 treatment induced depigmentation and reduced hair follicle length, skin thickness, and tyrosinase expression in vivo. Whereas, antroquinonol obviously ameliorated depigmentation of mice skin and resisted the reduction of hair follicle length, skin thickness, and tyrosinase expression induced by H2O2. Antroquinonol decreased CD8+ T cell infiltration in mice skin, inhibited the production of IL-2 and IFN-γ, and decreased the expression of CXCL10 and CXCR3. Summarily, our data shows antroquinonol inhibits CD8+ T cell proliferation in vitro. It also reduces CD8+ T cell infiltration and proinflammatory cytokine secretion and suppresses the thinning of epidermal layer in vivo. Our findings suggest that antroquinonol exerts immunosuppressive effects on CD8+ T cell proliferation and activation to resist depigmentation induced by H2O2

    TransTouch: Learning Transparent Objects Depth Sensing Through Sparse Touches

    Full text link
    Transparent objects are common in daily life. However, depth sensing for transparent objects remains a challenging problem. While learning-based methods can leverage shape priors to improve the sensing quality, the labor-intensive data collection in the real world and the sim-to-real domain gap restrict these methods' scalability. In this paper, we propose a method to finetune a stereo network with sparse depth labels automatically collected using a probing system with tactile feedback. We present a novel utility function to evaluate the benefit of touches. By approximating and optimizing the utility function, we can optimize the probing locations given a fixed touching budget to better improve the network's performance on real objects. We further combine tactile depth supervision with a confidence-based regularization to prevent over-fitting during finetuning. To evaluate the effectiveness of our method, we construct a real-world dataset including both diffuse and transparent objects. Experimental results on this dataset show that our method can significantly improve real-world depth sensing accuracy, especially for transparent objects.Comment: Accepted to the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Local residual stress evolution of highly irregular thermally grown oxide layer in thermal barrier coatings

    Get PDF
    Local residual stress in thermally grown oxide (TGO) layers is the primary cause of failure of thermal barrier coating (TBC) systems, especially TBCs prepared by air plasma spray (APS) with a highly irregular TGO. Herein, the distribution of residual stress and the evolution of the irregular TGO layer in APS TBCs were investigated as a function of oxidation time. The stress was measured from cross-sectional micrographs and converted to the actual stress inside the coatings before sectioning. The TGO exhibited significant inhomogeneity at different locations. Stress conversion occurred across the TGO thickness; the layer near the yttria-stabilised zirconia (YSZ) component exhibited compressive stress, whereas that along the bond coat was under tensile stress. The evolution of the compressive stress is also discussed. These analyses may provide a better understanding of the mechanism of APS TBCs

    Nondestructive measurements of residual stress in air plasma‐sprayed thermal barrier coatings

    Get PDF
    Premature spallation of thermal barrier coatings (TBCs) is a critical issue during the service of gas turbines, and nondestructive evaluation is crucial to address this problem. Herein, a novel approach that indicates delamination by measuring the residual stress evolution of thermally grown oxide (TGO) for air plasma spraying (APS) TBCs is proposed and verified via the combination of photoluminescence piezo‐spectroscopy (PLPS) and X‐ray computed tomography. A mineral‐oil‐impregnating approach and a cold‐mount low‐shrinkage epoxy‐mounting approach are used to alleviate the signal attenuation by pores and microcracks in APS TBCs, improving the detectable PLPS signal and X‐ray transmission for stress measurement and delamination characterization, respectively. We have nondestructively measured the TGO residual stress mapping in APS TBCs and its evolution with oxidation. Furthermore, the evolution of TGO morphology and critical microcracks are obtained by X‐ray computed tomography. The synchronous evolution of TGO residual stress, TGO thickness, and critical microcracks as a function of oxidation time is obtained and correlated. The transition point, as experimentally identified, at which the TGO stress starts to drop, agrees well with the critical moment of microcrack coalescence. This directly verifies that the TBC delamination can be effectively indicated by residual stress evolution of TGO in APS TBCs

    A new treatment for neurogenic inflammation caused by EV71 with CR2-targeted complement inhibitor

    Get PDF
    BACKGROUND: Enterovirus 71 (EV71), one of the most important neurotropic EVs, has caused death and long-term neurological sequelae in hundreds of thousands of young children in the Asia-Pacific region in the past decade. The neurological diseases are attributed to infection by EV71 inducing an extensive peripheral and central nervous system (CNS) inflammatory response with abnormal cytokine production and lymphocyte depletion induced by EV71 infection. In the absence of specific antiviral agents or vaccines, an effective immunosuppressive strategy would be valuable to alleviate the severity of the local inflammation induced by EV71 infection. PRESENTATION OF THE HYPOTHESIS: The complement system plays a pivotal role in the inflammatory response. Inappropriate or excessive activation of the complement system results in a severe inflammatory reaction or numerous pathological injuries. Previous studies have revealed that EV71 infection can induce complement activation and an inflammatory response of the CNS. CR2-targeted complement inhibition has been proved to be a potential therapeutic strategy for many diseases, such as influenza virus-induced lung tissue injury, postischemic cerebral injury and spinal cord injury. In this paper, a mouse model is proposed to test whether a recombinant fusion protein consisting of CR2 and a region of Crry (CR2-Crry) is able to specifically inhibit the local complement activation induced by EV71 infection, and to observe whether this treatment strategy can alleviate or even cure the neurogenic inflammation. TESTING THE HYPOTHESIS: CR2-Crry is expressed in CHO cells, and its biological activity is determined by complement inhibition assays. 7-day-old ICR mice are inoculated intracranially with EV71 to duplicate the neurological symptoms. The mice are then divided into two groups, in one of which the mice are treated with CR2-Crry targeted complement inhibitor, and in the other with phosphate-buffered saline. A group of mice deficient in complement C3, the breakdown products of which bind to CR2, are also infected with EV71 virus. The potential bioavailability and efficacy of the targeted complement inhibitor are evaluated by histology, immunofluorescence staining and radiolabeling. IMPLICATIONS OF THE HYPOTHESIS: CR2-Crry-mediated targeting complement inhibition will alleviate the local inflammation and provide an effective treatment for the severe neurological diseases associated with EV71 infection

    Immunization of Mice with Recombinant Protein CobB or AsnC Confers Protection against Brucella abortus Infection

    Get PDF
    Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ) assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB) or BAB1_1688 (AsnC) plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy

    Predicting nosocomial lower respiratory tract infections by a risk index based system

    Get PDF
    Although belonging to one of the most common type of nosocomial infection, there was currently no simple prediction model for lower respiratory tract infections (LRTIs). This study aims to develop a risk index based system for predicting nosocomial LRTIs based on data from a large point-prevalence survey. Among the 49328 patients included, the prevalence of nosocomial LRTIs was 1.70% (95% confidence interval [CI], 1.64% to 1.76%). The areas under the receiver operating characteristic (ROC) curve for logistic regression and fisher discriminant analysis were 0.907 (95% CI, 0.897 to 0.917) and 0.902 (95% CI, 0.892 to 0.912), respectively. The constructed risk index based system also displayed excellent discrimination (area under the ROC curve: 0.905 [95% CI, 0.895 to 0.915]) to identify LRTI in internal validation. Six risk levels were generated according to the risk score distribution of study population, ranging from 0 to 5, the corresponding prevalence of nosocomial LRTIs were 0.00%, 0.39%, 3.86%, 12.38%, 28.79% and 44.83%, respectively. The sensitivity and specificity of prediction were 0.87 and 0.79, respectively, when the best cut-off point of risk score was set to 14. Our study suggested that this newly constructed risk index based system might be applied to boost more rational infection control programs in clinical settings
    corecore