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Abstract

Premature spallation of thermal barrier coatings (TBCs) is a critical issue during the 

service of gas turbines, and nondestructive evaluation is crucial to address this problem. 

Herein, a novel approach that indicates delamination by measuring the residual stress 
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evolution of thermally grown oxide (TGO) for air plasma spraying (APS) TBCs is 

proposed and verified via the combination of photoluminescence piezo-spectroscopy 

(PLPS) and X-ray computed tomography. A mineral-oil-impregnating approach and a 

cold-mount low-shrinkage epoxy-mounting approach are used to alleviate the signal 

attenuation by pores and micro-cracks in APS TBCs, improving the detectable PLPS 

signal and X-ray transmission for stress measurement and delamination characterization, 

respectively. We have nondestructively measured the TGO residual stress mapping in 

APS TBCs and its evolution with oxidation. Furthermore, the evolution of TGO 

morphology and critical micro-cracks are obtained by X-ray computed tomography. The 

synchronous evolution of TGO residual stress, TGO thickness, and critical micro-cracks 

as a function of oxidation time is obtained and correlated. The transition point, as 

experimentally identified, at which the TGO stress starts to drop, agrees well with the 

critical moment of micro-crack coalescence. This directly verifies that the TBC 

delamination can be effectively indicated by residual stress evolution of TGO in APS 

TBCs. 

Keywords: Thermal barrier coating, Debonding, Residual stress, Photoluminescence 

piezo-spectroscopy, X-ray computed tomography

1. INTRODUCTION

There is a demand for more efficient and powerful gas turbines, which are 

characterized by higher operating temperatures, longer lifetimes and other features1-3. 
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This demand has led to great challenges in the development of advanced thermal 

protection technologies, among which thermal barrier coatings (TBCs) are regarded as 

one of those most promising to meet the demand4-7. Typically, TBCs consist of the 

following four layers5, 6: (i) the superalloy substrate, which is the main load-bearing 

constituent; (ii) the ceramic top coat (TC), which is usually composed of 6–8 wt.% 

yttria-stabilized zirconia (YSZ) and acts as a temperature insulator; (iii) an 

aluminum-containing bond coat (BC) between the substrate and the TC, which is 

usually composed of MCrAlY (where M is Ni and/or Co) and used for alleviating the 

thermal expansion mismatch stress between the aforementioned two layers; and (iv) a 

thermally grown oxide (TGO), which forms between TC and BC when they are exposed 

to high temperature and provides oxidation resistance. Each of these constituent layers 

presents marked differences in physical, thermal, and mechanical properties, and all 

contribute to determine performance and durability. Typically, the TBCs are fabricated 

using either electron-beam physical vapor deposition (EB-PVD) or air plasma spraying 

(APS)9. The APS technique is of relatively low cost and usually adopted in gas turbine 

blades of energy generators. For APS-based TBCs, the TC is fabricated by spraying the 

powders layer by layer and features a lamellar microstructure, resulting in randomly 

distributed micro-cracks and micro-pores, which lead to a low thermal conductivity. 

The premature spallation of TBCs is a critical issue during the service of gas 

turbines, and the fundamental failure mechanisms have been mostly revealed10-18. 

Nondestructive detection of delamination plays an important role in warning of failure 

and guiding mitigation, but it still faces many technical chanlleges19, especially for APS 
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TBCs on gas-turbine blades. A reliable detection of the damage at the TC/BC interface 

can not only facilitate structural health monitoring, but also provide a more rational 

recoating interval for a condition-based maintenance strategy, which enables reduction 

in TBC maintenance cost. Several testing techniques have been developed for detection 

of delamination in TBCs, e.g., ultrasound, THz waves, active thermography, eddy 

current, electrochemical impedance, and reflectance-enhanced luminescence. The 

limitations of these techniques in the applications to TBCs are summarized as follows. 

Neither ultrasonic waves nor THz waves are able to transmit throughout the YSZ 

topcoat because of the large signal attenuation caused by the porous microstructure20-24. 

In the active thermography method, the temperature difference between the delaminated 

and non-delaminated areas in TBCs is usually not evident for accurate detection25-27. 

The signal of TGO thickness detected by the eddy current testing method depends on 

the micro-constituents in TGO, such as Al2O3, NiO, and Cr2O3, which complicate the 

interpretation of the acquired signal for reliable detection. The electrochemical 

impedance can be used to reveal the degradation of TBCs; however, the impedance 

signal is found to be sensitive to test parameters such as electrode size, voltage 

amplitude, and environment temperature 28-30. In the reflectance-enhanced luminescence 

method, a rare-earth-based luminescent sublayer is embedded immediately above the 

TC/BC interface, and it can produce sufficient luminescence intensity to identify the 

delaminated regions. However, this method suffers from the occurrence of false 

detections caused by dirty spots and smears on the surface31-33. 

Instead of direct detection of delamination, the interfacial stress relaxation due to 
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delamination can be used as an indicator of delamination and thus the nondestructive 

measurement of stress state at the interface is not only useful for stress analysis but also 

promising as an effective indirect approach for delamination detection34-39. It is well 

known that TGO is subjected to high compressive residual stresses when the TC/TGO 

interface is intact (Fig. 1). However, after long-time high temperature exposure, TGO 

thickness increases and consequently delamination occurs and grows with time, 

accompanied by a significant decrease in the TGO residual stress (Fig. 1). The coupling 

of stress relaxation and delamination implies that TGO stress measurement can provide 

rich information for structural integrity assessment. Equally importantly, nondestructive 

measurement of TGO stress is less difficult than nondestructive detection of 

delamination.

The photoluminescence piezo-spectroscopy (PLPS) method is recognized as a 

reliable and practical technique for nondestructive measurement of the stress in TGO 

and it can be further used for indirect detection of delamination. The PLPS method is 

based on the correlation between Cr3+ luminescence spectrum peak shifts and the stress 

states. Ma and Clarke40 first presented the relationships between the measured 

fluorescence shifts and the stress states in single-crystal and polycrystalline ceramics. 

Subsequently, Christensen et al.34 determined the residual stress in TGO of EB-PVD 

TBCs after different oxidation times through measuring the fluorescence shift of Cr3+ 

ion within the TGO. They found that the TGO stresses fall in the range of 3.5–4 GPa. 

Using PLPS method, Heeg et al.36 experimentally identified the TGO behavior under 

thermal cycling throughout its lifetime towards eventual failure. Fukuchi et al.38 and 
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Manero et al.39 focused on the high-resolution spatial mapping of the stress in TGO, 

which provides a better understanding of the mechanisms leading to failure. However, 

most of them are not applicable to APS TBCs. This is because the ceramic TC has a 

large quantity of pores and horizontal micro-cracks (Fig. 2a), which strongly attenuate 

the fluorescence signal. Furthermore, the TGO in APS TBCs exhibit more irregular and 

complex morphologies than that in EB-PVD TBCs; thus, the delamination in APS 

TBCs is more complicated. For APS TBCs, other ions, such as Eu3+, was introduced 

into the ceramic TC as a sublayer-stress sensor41. However, the correlations between 

TGO morphology, residual stress, critical micro-cracks near interface and resultant 

delamination have not been revealed thus far, significantly limiting the further 

application of PLPS method to APS TBCs.

In the present work, delamination in APS TBCs is indicated by measuring the 

TGO residual stress. The residual stress and delamination are correlated with TGO 

morphology through the combination of PLPS and in-situ X-ray computed tomography 

(CT) methods. A mineral oil impregnating approach and a cold-mount low-shrinkage 

epoxy mounting approach are adopted to alleviate signal attenuation due to pores and 

micro-cracks in APS TBCs, and these approaches enable reliable detection of the PLPS 

signal and X-ray transmission, respectively. We have first obtained the residual stress 

mapping of TGO in APS TBCs. Furthermore, the TGO residual stress, TGO thickness, 

and delamination, as a function of oxidation time, are characterized synchronously, 

along with analyses and discussion on the experimental results.

Page 6 of 30

Journal of the American Ceramic Society

Journal of the American Ceramic Society



7

2. EXPERIMENTAL

2.1 Sample preparation and high-temperature oxidation

The substrate of the studied TBCs was made of nickel-based superalloy Hastelloy 

X with dimensions of 3 mm × 3 mm × 3 mm and 2 mm × 1 mm × 1 mm for the PLPS 

testing and the X-ray CT testing, respectively. The BC was fabricated using commercial 

NiCoCrAlY powders (40–80 μm, Ni: 32wt%, Co: 38.5wt%, Cr: 21wt%, Al: 8wt%, Y: 

0.5wt%, Sulzer-Metco) and the high-velocity oxygen fuel (HOVF) spraying method. 

The TC was fabricated using commercial 8wt% YSZ powders (45–100 μm, purity 

99.99%, Institute of Process Engineering, Chinese Academy of Science) and the APS 

method. The thicknesses of the TC and BC were 300 μm and 150 μm, respectively. 

Detailed parameters used in the thermal spraying can be found in our previous study42.

The TBC specimens were heated in a laboratory muffle furnace for 180 h at 1150 

°C from the as-sprayed state to spallation. At different exposure times (i.e., 20, 40, 80, 

120, 140, 160, and 180 h) the specimens were temporarily removed from the furnace, 

cooled to room temperature, and then tested. Following the completion of each test, the 

specimens were returned to the furnace for the next heat treatment period.

2.2 Nondestructive measurement of residual stress in TGO beneath porous YSZ TC

The PLPS technique is used to measure residual stress in TGO, which examines 

the spectral luminescence of TGO via laser excitation. As porosity and micro-cracks are 

inherent in APS TBCs, the luminescence signal is attenuated when light travels from the 

dense YSZ (refractive index is 2.7) to air (refractive index is 1) present in the pores, as 

shown in Fig. 2(a). To reduce the mismatch in the refractive indices, the APS TBCs 
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samples were vacuum-impregnated with mineral oil (Johnson & Johnson, New 

Brunswick, NJ) before the PLPS testing, as shown in Fig. 2(c). The mineral oil is a 

highly refractive material with a refractive index of 1.5. The impregnation was 

conducted at five different vacuum degrees, i.e., 10-4, 10-2, 100, 102, and 104, to 

determine the optimum vacuum condition. The pump-down time, vacuum holding time, 

and pump-up time were set as 30 min, 60 min, and 30 min, respectively.

The PLPS data were collected by Horiba HR800 spectroscopy equipment (Horiba, 

Kyoto, Japan). A 532 nm laser with 50 mW of power was used to excite a luminescence 

response from Cr3+ ions in TGO. The acquisition time was set as 20 s at 100% laser 

power. The spectral resolution was set as 0.3 cm-1 with a 1800 g/mm grating. The 

objective magnitude was selected to be 10× to ensure a laser beam spot size much larger 

than the grain size of TGO41. The laser was focused on the TBCs sample surface, and 

the previous study39 confirmed an insignificant influence of the depth of focus. An 

in-plane area of 3 mm × 3 mm was measured point-by-point by moving the focused 

laser beam to generate a residual stress map. Forty rows were scanned with a spatial 

resolution of 75 μm in both the vertical and horizontal scanning directions.

For data processing, a Lorentz curve algorithm was employed to fit the spectrum 

and determine the peak position. The peak is shifted to smaller wavenumbers upon 

application of compressive stress. The peak shifts can be determined through comparing 

the peak position for a stressed TGO with the reference peak position for a stress-free 

TGO. Then, the relationship between the peak shift and compressive stress was used to 

calculate the TGO residual stress, which is expressed in following equation41:
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Herein, PSC values of 7.59 cm−1/GPa and 7.61 cm−1/GPa for R1 and R2, respectively, 

were used according to Manero et al.39. 

2.3 X-ray tomography characterization of TBCs

Microscopic characterization of TBCs is usually based on cross-section scanning. 

This means only a two-dimensional microstructure is captured, which may not be 

representative for the actual microstructure. Here, the three-dimensional microstructure 

of the coating was nondestructively imaged by X-ray CT using a Sanying Voxel-3000 

Nano X-ray microscope (Sanying, China), as schematically shown in Fig. 3. When the 

X-ray is passed through the TBCs specimen, the different layers, i.e., the TC, BC, TGO, 

substrate, as well as the air (in pores), can be distinguished by the dissimilar X-ray 

attenuation coefficients and then rendered in images of different grayscale levels. 

Owing to the high attenuation coefficient of the porous YSZ material and nickel-based 

superalloy, the TBCs sample was embedded in a cold mounting resin to enhance signal. 

The substrate was also slightly thinned down to 1 mm, during which the cooling water 

was applied to avoid overheating the substrate. 
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The X-ray tube was operated at 225 kV with a beam current of 0.1 mA. A lead 

glass X-ray filter was used to improve the polychromatic X-ray beam for the test. The 

optimal value of transmission is presumed to be 23%–35%, which would result in the 

elimination of the noise in the images. A 10× objective lens was used to achieve a pixel 

size of less than 0.75 μm with a field of view of almost 2 × 2 mm2. The tomography 

scans were performed with 4000 projections at an angular increment of 0.045°. The 

exposure time was selected as 6.0 s per angular increment. A 2048 × 2048 CCD pixel 

detector was used to record the projections. This characterization technique allowed the 

observation of the microscopic features at the same location for a single TBCs sample 

as a function of oxidation time and temperature.

The projections were then reconstructed to reveal the three-dimensional TBCs 

microstructure, with particular attention placed on the TGO morphology and interface 

delamination. The reconstruction was conducted using nano Voxel CT-Pro software 

(Sanying, China). The image analysis, including filtering, segmentation and 

quantification, was performed using Avizo software (FEI, version 9). It should also be 

mentioned that a top-hat segmentation method was used here, which is believed to have 

great advantage in extracting small elements from given images.

It is important to note that, the mineral-oil-impregnation and cold-mount 

low-shrinkage epoxy-mounting would not affect the residual stress state in TBCs. The 

mineral oil used in PLPS test was a low-viscosity liquid and impregnated by capillary 

force in porous YSZ ceramic. The capillary force was very slight and, thus, could be 

ignored when compared with the residual stress in the TGO (1–5 GPa). The cold-mount 
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epoxy was used for mounting samples. This is helpful in holding the microstructure and 

stress state in TBCs. In addition, after each PLPS and X-ray CT test, the samples were 

heated in a laboratory muffle furnace at 1150 °C for the next heat treatment period. 

Thus, both the mineral oil and cold-mount epoxy disappeared and would not induce any 

additional stress.

3. RESULTS AND DISCUSSIONS

Fig. 4(a) presents a comparison of Cr3+ luminescence intensities, which are 

nondestructively detected from the TGO at different vacuum degrees, i.e., 10-4, 10-2, 100, 

102, and 104 Pa. Solid lines represent results after the mineral-oil impregnation, and 

dotted lines represent results from the untreated samples. For each vacuum degree, five 

points are collected (points A, B, C, D, and E on impregnated sample, and points F, G, 

H, I, and J on the sample without impregnation). As might be expected, the 

luminescence intensities have been dramatically enhanced after the treatment for all 

vacuum degrees, demonstrating the effectiveness of the approach we proposed. The 

maximum intensities of Cr3+ luminescence for each vacuum degree are also described in 

Fig. 4(b). It is noted that, the luminescence intensity sharply decreases when the 

vacuum decreases from 10-4 to 100, whereas it tends to be insensitive when the vacuum 

is lower. In particular, there does appear to be a horizontal asymptote representing a 

critical value of the vacuum degree, of approximately 102, below which the 

luminescence intensity is not significantly impacted by the vacuum strength. According 

to the results, a vacuum degree of 10-4 was selected for the subsequent determination of 
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residual stress in TGO. 

The distributions of biaxial residual stresses in TGO in APS TBCs as a function of 

oxidation time have been nondestructively measured, as shown in Fig. 5. Each map 

represents 1600 measurement points in total over the entire sample. All maps have been 

generated using the R1 spectral peaks, which are higher than the R2 peaks, resulting in 

less influence of bimodal stress on the fitting procedures. The average thermal oxidation 

life of TBCs was determined to be approximately 180 h. The residual stress is 

color-coded in Figure 5, and the stress-scale is adjusted to optimize the color contrast. 

Clearly, the residual stress is overwhelmingly compressive. The TGO stress was 

approximately 1 GPa after the first 20 h of oxidation (Fig. 5a); then, it increased to 2 

GPa after 40 h of oxidation (Fig. 5b) and to 3 GPa after 80 h of oxidation (Fig. 5c). It 

continued increasing to 4–5 GPa after 140 h of oxidation (Fig. 5e). At approximately 

88.9% of TBCs life (after 160 h oxidation), the residual stress of TGO dropped abruptly 

and exhibits a significantly non-uniform distribution (Fig. 5f). Low-stress and 

high-stress areas indicate micro-cracks and intact zone, respectively. Hence, it can be 

deduced that critical micro-cracks initiated at different locations after long-time 

oxidation. Following the initiation of micro-cracks, the residual stresses further 

decreased to approximately 0–1 GPa, until the spallation of the entire TBCs at the 180 h 

oxidation lifetime (Fig. 5g).It should be also noted that the non-homogeneity of the 

stress distribution gradually reduced during the oxide growth, implying that the final 

spallation was caused by the coalescence of these critical micro-cracks.

To synchronously capture the evolution of TGO and critical micro-cracks during 

Page 12 of 30

Journal of the American Ceramic Society

Journal of the American Ceramic Society



13

the high-temperature oxidation, the X-ray CT test was conducted. Fig. 6(a) shows the 

3D color-rendered 3D microstructure image of the APS TBCs after 20 h oxidation. The 

nickel-based superalloy substrate is marked in green at the bottom, in which the orange 

points represents high-Z material. The NiCoCrAlY bond coat in the middle layer is 

labeled in blue, and the YSZ top coat is in yellow. The TGO at TC/BC interface is 

marked in black. Pores and cracks in the TC and at the interface are marked in dark blue. 

Magnifications of the microstructures are presented in Figs. 6(b)–6(d). From these 

images the YSZ TC, TGO, BC, and superalloy substrate can be reliably distinguished. 

This enables the observation of TGO growth and microcrack evolution at a specific 

location of the same TBC sample, which can be correlated with the TGO residual stress 

and confirm the effectiveness of the delamination indicated by reduction in TGO 

residual stress.

To reveal the detailed microstructural features for a specific location, we examined 

the CT slices and tracked the microstructural evolution of a locally enriched TGO 

section. These sequential CT slices enable us to observe the TGO growth and identify 

the initiation of the critical micro-cracks. In such a way, the evolution of TGO 

morphology, critical micro-cracks, and TC pores are captured as a function of thermal 

oxidation time, with a series of internal microstructure images taken from the 3D X-ray 

tomography results at the same location in the same TBC sample, as shown in Fig.7. 

The grey contrast in the images originates from the different X-ray absorption 

coefficients of each layer. The TC and substrate are in lighter gray, whereas the BC 

appears darker. The pores and micro-cracks that are distributed in the TC and TGO at 
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the interface are in black. The TGO layer can be clearly observed above the BC layer 

after 20 h oxidation (Fig. 7a); and the TGO growth became faster in the following 120 h 

oxidation (Fig. 7d). The TC/BC interface remained intact before 40 h oxidation (Fig. 

7b), although many defects existed near the interface. The critical micro-cracks 

gradually initiated after 80 h oxidation, which are located right above the TGO up to 

approximately 10–20 µm (Figs. 7c and 7d). This cracking behavior is different from that 

observed in the EBPVD TBCs, in which the micro-cracks are mainly formed at the 

TC/TGO interface4. After 120 h oxidation, the rate of TGO growth becomes slow, and 

the TGO thickness remained approximately constant (Figs. 7e and 7f). In the meanwhile, 

the critical micro-cracks that nucleated at different locations converged, leading to the 

final spallation of the YSZ TC (Fig. 7f). Notably, the variation in TGO thickness and 

micro-cracks is consistent with the evolution of the TGO residual stress. In particular, 

the residual stress dropped drastically (Fig. 5g) when the coalescence of these 

micro-cracks occurred, which is in accordance with previous numerical results[43, 44]. 

This confirms the effectiveness of the approach using TGO residual stress reduction as 

an indicator of delamination for APS TBCs.

The quantification of critical micro-cracks was performed by measuring the lengths 

of the micro-crack, as well as the TGO thickness, using the images obtained from the 

CT slices for through-thickness sections. It should be mentioned that 10 measurements 

of TGO thickness were carried out at random locations for each oxidation time, thereby 

capturing the statistics of the thickness of the TGO exhibiting microstructural 

inhomogeneity. Furthermore, the synchronous evolution of TGO residual stress, TGO 
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thickness, and critical micro-crack length are obtained for different oxidation times, as 

shown in Fig. 8. Evidently, the TGO thickness increased rapidly to 8.2 μm after the first 

120 h oxidation and then became stable with an average value of 9.6 μm, following a 

sub-parabolic growth law. The crack length increased slowly at the initial stage but then 

increased rapidly to approximately 800 μm over the rest of the oxidation time. The 

entire evolution of the TGO residual stress can be divided into two stages, i.e., the stress 

development stage and the stress relaxation stage. In the stress development stage 

(0–140 h oxidation, 0%–77.8% of TBC life), the stress accumulated owing to the TGO 

growth. The stress first rose rapidly to a mean value of approximately 1.76 GPa after 20 

h oxidation (11.1% of TBC life). Then, the stress increased gradually until reaching a 

peak value of approximately 3.45 GPa after 140 h oxidation (77.8% of TBC life). The 

peak stress of TGO can be defined as a spallation stress. In the stress relaxation stage 

(160–180 h oxidation, 77.8%–100% of TBC life), the stress dropped rapidly from the 

peak and then decreased at a more or less constant rate, implying that most micro-cracks 

merged quickly at a critical moment. The drop in the TGO residual stress is mainly due 

to the coalescence of the micro-cracks near the interface, as demonstrated by the 

evolution curves of the micro-crack length (blue lines in Fig. 8). The standard deviation 

of the TGO residual stress in the relaxation stage is larger than that in the stress 

development stage. This can be mainly attributed to the high heterogeneity of TGO in 

APS TBCs. In addition, the turning point at which the TGO stress started to fall is in 

good correlation with the coalescence moment of the micro-cracks. This provides a 

clear verification that TBCs delamination can be effectively indicated by measuring the 
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residual stress in TGO of APS TBCs.

4. CONCLUSION

A novel PLPS method is used to nondestructively measure the residual stress in 

TGO of APS TBCs subjected to high temperature oxidation. X-ray CT was employed to 

characterize the microstructural evolution during TGO growth. The residual stress has 

been correlated with oxidation and delamination, providing insights into the different 

aspects of the failure process. The conclusions are as follows:

(1) Mineral-oil-impregnation and cold-mount low-shrinkage epoxy-mounting 

methods were adopted to alleviate the PLPS and X-ray signal attenuation by pores and 

micro-cracks in APS TBCs, thereby enabling reliable measurement of residual stress 

and characterization of microstructural evolution, respectively. The vacuum degree was 

found to have great effect on the luminescence transmissivity through YSZ ceramic 

coatings. In particular, there is a critical vacuum value of approximately 102, below 

which the luminescence intensity is not significantly impacted.

(2) For the first time, the residual stress distribution in the TGO of APS TBCs, as 

well as its evolution with oxidation time, was nondestructively measured. The stress 

evolution process can be divided into two stages, i.e., the development stage and the 

relaxation stage. In the development stage, the stress accumulated to a peak value of 

3.45 GPa owing to the growth of TGO. In the relaxation stage, the stress dropped 

rapidly after the onset of peak stress but decreased at a constant rate afterward.

(3) The TGO thickness followed a sub-parabolic growth law with a final thickness 

of 9.6 μm. The critical micro-cracks were initiated after 80 h oxidation and were mainly 
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located right above the TGO up to approximately 10–20 µm in height. The crack length 

increased slowly at the initial stage and then accelerated over the rest of the oxidation 

time. 

(4) The residual stress, TGO thickness, and critical micro-cracks are different 

factors responsible for the final failure and their synchronous evolution as a function of 

oxidation time has been obtained. The residual stress increased with TGO growth until 

micro-crack nucleation. The transition point at which the stress in TGO started to fall is 

in good correlation with the critical moment of the micro-crack coalescence. This 

observation provides a direct verification that the TBC delamination can be effectively 

indicated by measuring the residual stress in TGO of APS TBCs.

(5) In the future, we will develop a portable TGO detection system, based on the 

proposed method, applicable to the preparatory test for topcoat delamination inspection, 

which allows flexibility in matching actual turbine blade and coatings with curved 

surfaces.
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Figure captions

Figure 1. Schematics of the intact zone at which TGO suffers residual stress and the 

cracked interface at which TGO stress is relieved.

Figure 2. Schematics showing (a) coating with pores (b) luminescence attenuated by 

porous ceramic coating. (c) Luminescence penetrating the ceramic coating vacuum 

impregnated with mineral oil.

Figure 3. Schematic describing the X-ray computed tomography test on the TBC 

sample, which was embedded in a cold mounting resin.

Figure 4. Fig. 4 (a) Comparison of the detected intensities of Cr3+ luminescence emitted 

by the TGO and passing through the YSZ TC, before and after the 

mineral-oil-impregnation treatment, at a vacuum degree of 10-4. (b) Change in average 

intensities of Cr3+ luminescence as a function of vacuum degree.

Figure 5. Distribution of biaxial compressive residual stress in TGO for different 

oxidation times.

Figure 6. (a) 3D microstructure of the APS TBCs detected by the X-ray computed 

tomography method. (b) Pores in top coat marked in dark blue. (c) Dense YSZ region 

marked in yellow. (d) TGO at interface labeled in black.
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Figure 7. CT slice images showing the microstructure of APS TBCs as a function of 

thermal oxidation time: (a) 20, (b) 40, (c) 80, (d) 120, (e) 160, and (f) 180 h.

Figure 8. Synchronous measurements of TGO residual stress, TGO thickness, and 

critical micro-crack length as a function of oxidation time.
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Figures

Fig. 1 Schematics of the intact zone at which TGO suffers residual stress and the cracked 

interface at which TGO stress is relieved.

Fig. 2 Schematics showing (a) coating with pores (b) luminescence attenuated by porous ceramic 

coating. (c) Luminescence penetrating the ceramic coating vacuum impregnated with mineral oil.
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Fig. 3 Schematic describing the X-ray computed tomography test on the TBC sample, 

which was embedded in a cold mounting resin.

Fig. 4 (a) Comparison of the detected intensities of Cr3+ luminescence emitted by the TGO and 

passing through the YSZ TC, before and after the mineral-oil-impregnation treatment, at a 

vacuum degree of 10-4. (b) Change in average intensities of Cr3+ luminescence as a function of 

vacuum degree.
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Fig. 5 Distribution of biaxial compressive residual stress in TGO for different oxidation times.
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Fig. 6 (a) 3D microstructure of the APS TBCs detected by the X-ray computed tomography 

method. (b) Pores in top coat marked in dark blue. (c) Dense YSZ region marked in yellow. (d) 

TGO at interface labeled in black.
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Fig. 7 CT slice images showing the microstructure of APS TBCs as a function of thermal 

oxidation time: (a) 20, (b) 40, (c) 80, (d) 120, (e) 160, and (f) 180 h.

Page 29 of 30

Journal of the American Ceramic Society

Journal of the American Ceramic Society



Fig. 8 Synchronous measurements of TGO residual stress, TGO thickness, and critical micro-

crack length as a function of oxidation time.
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