163 research outputs found

    THE STUDY OF NICKEL COPPER BASED SUPERCAPACITORS FOR ENERGY STORAGE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Health Monitoring System Based on Flexible Triboelectric Sensors for Intelligence Medical Internet of Things and its Applications in Virtual Reality

    Full text link
    The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications, enabling the realization of precision medicine, intelligent healthcare, and telemedicine in the era of digitalization and intelligence. However, the IoMT faces various challenges, including sustainable power supply, human adaptability of sensors and the intelligence of sensors. In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics. We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD). By further integrating deep learning-assisted data analytics, we actualized an intelligent healthcare monitoring system for the surveillance and interaction of PD patients, which includes location/trajectory tracking, heart monitoring and identity recognition. This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions. This monitoring system is cost-effective, easily fabricated, highly sensitive, and intelligent, consequently underscores the immense potential of human body sensing technology in a Health 4.0 society

    DFT Study on Regulating the Electronic Structure and CO2 Reduction Reaction in BiOBr/Sulphur-Doped G-C3N4 S-Scheme Heterojunctions

    Get PDF
    Photocatalytic CO2 reduction is a promising method to mitigate the greenhouse effect and energy shortage problem. Development of effective photocatalysts is vital in achieving high photocatalytic activity. Herein, the S-scheme heterojunctions composed by BiOBr and g-C3N4 with or without S doping are thoroughly investigated for CO2 reduction by density functional theory (DFT) calculation. Work function and charge density difference demonstrate the existence of a built-in electric field in the system, which contributes to the separation of photogenerated electron-hole pairs. Enhanced strength of a built-in electric field is revealed by analysis of Bader charge and electric field intensity. The results indicate that S doping can tailor the electronic structures and thus improve the photocatalytic activity. According to the change in absorption coefficient, system doping can also endow the heterojunction with increased visible light absorption. The in-depth investigation indicates that the superior CO2 reduction activity is ascribed to low rate-determining energy. And both of the heterojunctions are inclined to generate CH3OH rather than CH4. Furthermore, S doping can further reduce the energy from 1.23 to 0.44 eV, indicating S doping is predicted to be an efficient photocatalyst for reducing CO2 into CH3OH. Therefore, this paper provides a theoretical basis for designing appropriate catalysts through element doping and heterojunction construction

    Swelling pressure of phyllite residual soil during saturation

    Get PDF
    Phyllite residual soil is a typical regional soil formed from the weathering of phyllite rock formations, characterized by poor engineering properties. The swelling pressure could pose a threat to roadbed stability and other geological engineering disasters during the rainy season. Therefore, studying the swelling pressure of phyllite residual soil is critical for ensuring the sustainable development of both human society and the natural environment. In this study, a series of swelling pressure tests were conducted on the phyllite residual soil to determine its swelling pressure, and nuclear magnetic resonance (NMR) test was applied to assess the evolution of soil fabric in both the initial unsaturated state and saturated state. The results indicate that the swelling rate of phyllite residual soil is negatively correlated with the initial water content and positively correlates with the dry density. The denser or drier the phyllite residual soil is in its initial state, the higher the equilibrium swelling pressure will be. The analysis of T2 distribution curves reveals that during the wetting process in phyllite residual soil, water fills micropores prior to macropores until water fills up all pores

    3D-Epigenomic Regulation of Gene Transcription in Hepatocellular Carcinoma.

    Get PDF
    The fundamental cause of transcription dysregulation in hepatocellular carcinoma (HCC) remains elusive. To investigate the underlying mechanisms, comprehensive 3D-epigenomic analyses are performed in cellular models of THLE2 (a normal hepatocytes cell line) and HepG2 (a hepatocellular carcinoma cell line) using integrative approaches for chromatin topology, genomic and epigenomic variation, and transcriptional output. Comparing the 3D-epigenomes in THLE2 and HepG2 reveal that most HCC-associated genes are organized in complex chromatin interactions mediated by RNA polymerase II (RNAPII). Incorporation of genome-wide association studies (GWAS) data enables the identification of non-coding genetic variants that are enriched in distal enhancers connecting to the promoters of HCC-associated genes via long-range chromatin interactions, highlighting their functional roles. Interestingly, CTCF binding and looping proximal to HCC-associated genes appear to form chromatin architectures that overarch RNAPII-mediated chromatin interactions. It is further demonstrated that epigenetic variants by DNA hypomethylation at a subset of CTCF motifs proximal to HCC-associated genes can modify chromatin topological configuration, which in turn alter RNAPII-mediated chromatin interactions and lead to dysregulation of transcription. Together, the 3D-epigenomic analyses provide novel insights of multifaceted interplays involving genetics, epigenetics, and chromatin topology in HCC cells

    Variability study of MWCNT local interconnects considering defects and contact resistances - Part II: impact of charge transfer doping

    Get PDF
    In this paper, the impact of charge transfer doping on the variability of multiwalled carbon nanotube (MWCNT) local interconnects is studied by experiments and simulations. We calculate the number of conducting channels of both metallic and semiconducting carbon nanotubes as a function of Fermi level shift due to doping based on the calculation of transmission coefficients. By using the MWCNT compact model proposed in Part I of this paper, we study the charge transfer doping of MWCNTs employing Fermi level shift to reduce the performance variability due to changes in diameter, chirality, defects, and contact resistance. Simulation results show that charge transfer doping can significantly improve MWCNT interconnect performance and variability by increasing the number of conducting channels of shells and degenerating semiconducting shells to metallic shells. As a case study on an MWCNT of 11 nm outer diameter, when the Fermi level shifts to 0.1 eV, up to ~80% of performance and standard deviation improvements are observed. Furthermore, a good match between experimental data and simulation results is observed, demonstrating the effectiveness of doping, the validity of the MWCNT compact model and proposed simulation methodology

    Mutation spectrum of PTS gene in patients with tetrahydrobiopterin deficiency from jiangxi province

    Get PDF
    Background: Hyperphenylalaninemia (HPA) is the most common inborn error in amino acid metabolism. It can be primarily classified into phenylalanine hydroxylase (PAH) deficiency and tetrahydrobiopterin (BH4) deficiency. BH4 deficiency (BH4D) is caused by genetic defects in enzymes involved in the biosynthesis and regeneration of BH4. 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), which is encoded by the PTS gene, participates in the biosynthesis of BH4. PTPS deficiency (PTPSD) is the major cause of BH4D. In this study, we investigated that the prevalence of BH4D in Jiangxi province was approximately 12.5 per 1,000,000 live births (69/5,541,627). Furthermore, the frequency of BH4D was estimated to be 28.8% (69/240) in the HPA population of Jiangxi. In this study, we aimed to characterize the mutational spectrum of the PTS gene in patients with PTPSD from Jiangxi province.Method: Newborn screening data of Jiangxi province from 1997 to 2021 were analyzed and 53 families with PTPSD were enrolled for the analysis of the PTS gene variants by Sanger sequencing.Results: 106 variants were identified in 106 alleles of 53 patients with PTPSD, including 13 types of variants reported previously, and two novel variants (c.164-36A>G and c.146_147insTG). The predominant variant was c.259C>T (47.2%), followed by c.84-291A>G (19.8%), c.155A>G (8.5%), c.286G>A (6.6%) and c.379C>T (4.7%).Conclusion: The results of this study can not only provide guidance for the molecular diagnosis and genetic counseling in cases of PTPS deficiency but also enrich the PTS mutation database
    corecore