10 research outputs found

    The influence of AlN buffer layer on the growth of self-assembled GaN nanocolumns on graphene

    Get PDF
    GaN nanocolumns were synthesized on single-layer graphene via radio-frequency plasma-assisted molecular beam epitaxy, using a thin migration-enhanced epitaxy (MEE) AlN buffer layer as nucleation sites. Due to the weak nucleation on graphene, instead of an AlN thin-film we observe two distinguished AlN formations which affect the subsequent GaN nanocolumn growth: (i) AlN islands and (ii) AlN nanostructures grown along line defects (grain boundaries or wrinkles) of graphene. Structure (i) leads to the formation of vertical GaN nanocolumns regardless of the number of AlN MEE cycles, whereas (ii) can result in random orientation of the nanocolumns depending on the AlN morphology. Additionally, there is a limited amount of direct GaN nucleation on graphene, which induces non-vertical GaN nanocolumn growth. The GaN nanocolumn samples were characterized by means of scanning electron microscopy, transmission electron microscopy, high-resolution X-ray diffraction, room temperature micro-photoluminescence, and micro-Raman measurements. Surprisingly, the graphene with AlN buffer layer formed using less MEE cycles, thus resulting in lower AlN coverage, has a lower level of nitrogen plasma damage. The AlN buffer layer with lowest AlN coverage also provides the best result with respect to high-quality and vertically-aligned GaN nanocolumns

    Characterisation of quantum dot-intermediate band solar cells with optical spectroscopy

    No full text
    This report describes the development of a photoreflectance (PR) technique in order to study InAs/GaAs quantum dots-based intermediate band solar cells (QD-IBSC). The motivation for this study, is that PR has previously been applied to detect the optical transitions involving the intermediate band as well as the excited states of the quantum dots (QDs). Such excited states are detrimental for the QD-IBSC performance, and they are not readily detected by photoluminescence (PL).The PR signals show several unique peaks for all samples, related to their properties. The Franz-Keldysh oscillations (FKO) are observed and the fitting is done by using Airy function. These oscillations can be used to determine electro-optic energy and the built-in electric field. Energy bandgap of the various materials composing the sample (Al(0.3)Ga(0.7)As, GaAs, wetting layer (WL) and QDs) is resolved using first derivative Lorentzian lineshape function. To complement PR findings, PL measurements for a wide range of excitation energies are conducted at room-temperature. The energy bandgap of the WL is identified in the low PL excitation energy

    Molecular Beam Epitaxy of GaN/AlGaN Nanocolumns on Graphene for Potential Application in Ultraviolet Light-Emitting Diodes

    No full text
    Hybrid integration of defect-free III-nitride semiconductor nanocolumns and two-dimensional graphene as their substrate is an extremely promising route towards the development of ultraviolet light emitters, as graphene can be simultaneously utilized as a transparent conductive electrode. Nevertheless, a proof-of-concept of such hybrid device system has not been achieved before this work, and the study of highly dense vertical nanocolumns on graphene is also inadequately discussed. This PhD dissertation presents the investigation on the molecular beam epitaxial growth and the associated structural, optical and electrical properties of GaN nanocolumns and GaN/AlGaN nanocolumn ultraviolet light-emitting diode structures formed on graphene. Self-organized GaN nanocolumns are grown firstly on amorphous fused silica, and then on graphene substrates by employing AlN buffer layer. High density of vertical nanocolumns characterized with excellent crystalline quality is achieved on these substrates. Particularly for the growth on graphene possessing no dangling bonds in its surface, additional study is carried out to clarify the role of the thin AlN as an intermediate layer between the formation of self-assembled GaN nanocolumns and graphene. Besides leading to the distinct arrangements of AlN that can affect the growth orientation of GaN nanocolumns, different AlN growth conditions unintentionally alter the structural properties of graphene. Based on the understandings gained through the studies mentioned above, vertical growth of heterostructured GaN/AlGaN self-organized nanocolumns is subsequently realized on graphene. This growth orientation of the nanocolumns on graphene is essential for the light-emitting diode fabrication from as-grown nanocolumn samples. Here, graphene is employed as the growth substrate and simultaneously as the transparent conducting electrode for wurtzite GaN/AlGaN nanocolumns. In spite of high sheet resistance of graphene after the nanocolumn growth, a single excitonic emission peak can be observed at 365 and ~350 nm (ultraviolet-A region) for the devices grown on double-layer graphene and single-layer graphene, respectively. This PhD thesis shows a vivid example on the development of nitride nanocolumn/graphene-based device technology. In this regard, the combination between these two materials provides a new approach in designing the ultraviolet light-emitting diodes, owing to the unique graphene properties

    The influence of AlN buffer layer on the growth of self-assembled GaN nanocolumns on graphene

    No full text
    GaN nanocolumns were synthesized on single-layer graphene via radio-frequency plasma-assisted molecular beam epitaxy, using a thin migration-enhanced epitaxy (MEE) AlN buffer layer as nucleation sites. Due to the weak nucleation on graphene, instead of an AlN thin-film we observe two distinguished AlN formations which affect the subsequent GaN nanocolumn growth: (i) AlN islands and (ii) AlN nanostructures grown along line defects (grain boundaries or wrinkles) of graphene. Structure (i) leads to the formation of vertical GaN nanocolumns regardless of the number of AlN MEE cycles, whereas (ii) can result in random orientation of the nanocolumns depending on the AlN morphology. Additionally, there is a limited amount of direct GaN nucleation on graphene, which induces non-vertical GaN nanocolumn growth. The GaN nanocolumn samples were characterized by means of scanning electron microscopy, transmission electron microscopy, high-resolution X-ray diffraction, room temperature micro-photoluminescence, and micro-Raman measurements. Surprisingly, the graphene with AlN buffer layer formed using less MEE cycles, thus resulting in lower AlN coverage, has a lower level of nitrogen plasma damage. The AlN buffer layer with lowest AlN coverage also provides the best result with respect to high-quality and vertically-aligned GaN nanocolumns

    Vertical GaN nanocolumns grown on graphene intermediated with a thin AlN buffer layer

    Get PDF
    We report on the self-assembled growth of high-density and vertically-oriented n-doped GaN nanocolumns on graphene by radio-frequency plasma-assisted molecular beam epitaxy. Graphene was transferred to silica glass, which was used as the substrate carrier. Using a migration enhanced epitaxy grown AlN buffer layer for the nucleation is found to enable a high density of vertical GaN nanocolumns with c-axis growth orientation on graphene. Furthermore, micro-Raman spectroscopy indicates that the AlN buffer reduces damage on the graphene caused by impinging active N species generated by the radio-frequency plasma source during the initial growth stage and nucleation of GaN. In addition, the grown GaN nanocolumns on graphene are found to be virtually stress-free. Micro-photoluminescence measurements show near band-edge emission from wurtzite GaN, exhibiting higher GaN bandgap related photoluminescence intensity relative to a reference GaN bulk substrate and the absence of both yellow luminescence and excitonic defect emission. Transmission electron microscopy reveals the interface of GaN nanocolumns on graphene via a thin AlN buffer layer. Even though the first few monolayers of AlN on top of graphene are strained due to in-plane lattice mismatch between AlN and graphene, the grown GaN nanocolumns have a wurtzite crystal structure without observable defects. The results of this initial work pave the way towards realizing low-cost and high-performance electronic and optoelectronic devices based on III-N semiconductors grown on graphene.acceptedVersio

    Vertical GaN nanocolumns grown on graphene intermediated with a thin AlN buffer layer

    No full text
    We report on the self-assembled growth of high-density and vertically-oriented n-doped GaN nanocolumns on graphene by radio-frequency plasma-assisted molecular beam epitaxy. Graphene was transferred to silica glass, which was used as the substrate carrier. Using a migration enhanced epitaxy grown AlN buffer layer for the nucleation is found to enable a high density of vertical GaN nanocolumns with c-axis growth orientation on graphene. Furthermore, micro-Raman spectroscopy indicates that the AlN buffer reduces damage on the graphene caused by impinging active N species generated by the radio-frequency plasma source during the initial growth stage and nucleation of GaN. In addition, the grown GaN nanocolumns on graphene are found to be virtually stress-free. Micro-photoluminescence measurements show near band-edge emission from wurtzite GaN, exhibiting higher GaN bandgap related photoluminescence intensity relative to a reference GaN bulk substrate and the absence of both yellow luminescence and excitonic defect emission. Transmission electron microscopy reveals the interface of GaN nanocolumns on graphene via a thin AlN buffer layer. Even though the first few monolayers of AlN on top of graphene are strained due to in-plane lattice mismatch between AlN and graphene, the grown GaN nanocolumns have a wurtzite crystal structure without observable defects. The results of this initial work pave the way towards realizing low-cost and high-performance electronic and optoelectronic devices based on III-N semiconductors grown on graphene

    Growth study of self-assembled GaN nanocolumns on silica glass by plasma assisted molecular beam epitaxy

    No full text
    We demonstrate GaN nanocolumn growth on fused silica glass by plasma-assisted molecular beam epitaxy. The effect of the substrate temperature, Ga flux and N2 flow rate on the structural and optical properties are studied. At optimum growth conditions, GaN nanocolumns are vertically aligned and well separated with an average diameter, height and density of 72 nm, 1.2 μm and 1.6 × 109 cm−2, respectively. The nanocolumns exhibit wurtzite crystal structure with no threading dislocations, stacking faults or twinning and grow in the [0 0 0 1] direction. At the interface adjacent to the glass, there is a few atom layers thick intermediate phase with ABC stacking order (zinc blende). Photoluminescence measurements evidence intense and narrow excitonic emissions, along with the absence of any defect-related zinc blende and yellow luminescence emission

    GaN/AlGaN nanocolumn ultraviolet light-emitting diode using double-Layer graphene as substrate and transparent electrode

    No full text
    The many outstanding properties of graphene have impressed and intrigued scientists for the last few decades. Its transparency to light of all wavelengths combined with a low sheet resistance makes it a promising electrode material for novel optoelectronics. So far, no one has utilized graphene as both the substrate and transparent electrode of a functional optoelectronic device. Here, we demonstrate the use of double-layer graphene as a growth substrate and transparent conductive electrode for an ultraviolet light-emitting diode in a flip-chip configuration, where GaN/AlGaN nanocolumns are grown as the light-emitting structure using plasma-assisted molecular beam epitaxy. Although the sheet resistance is increased after nanocolumn growth compared with pristine double-layer graphene, our experiments show that the double-layer graphene functions adequately as an electrode. The GaN/AlGaN nanocolumns are found to exhibit a high crystal quality with no observable defects or stacking faults. Room-temperature electroluminescence measurements show a GaN related near bandgap emission peak at 365 nm and no defect-related yellow emission

    Graphene-Based Transparent Conducting Substrates for GaN/AlGaN Nanocolumn Flip-Chip Ultraviolet Light-Emitting Diodes

    Get PDF
    Flip-chip ultraviolet light-emitting diodes based on self-assembled GaN/AlGaN nanocolumns have been fabricated, exploiting single-layer graphene not only as a growth substrate but also as a transparent conducting electrode. High crystalline quality of the nanocolumns is confirmed by detailed electron microscopy characterization, also showing the intrinsic GaN quantum disk in the active region of the nanocolumns. These features are further confirmed in the optical emission, where the absence of defect-related yellow emission and the presence of blue-shifted (from the usual 365 nm band gap emission of bulk wurtzite GaN) emission at ∼350 nm, ascribed to quantum confinement and strain effects, are observed. Despite a noticeable graphene damage after the nanocolumn growth that causes high sheet resistance of graphene and high turn-on voltage, the proof of concept of single-layer graphene used as the transparent conducting substrate for a nanocolumn device is demonstrated. This study offers an alternative platform for the fabrication of next-generation nano-optoelectronic and electronic devices
    corecore