10 research outputs found

    A new experience mining approach for improving low carbon city development

    Full text link
    Developing low carbon city (LCC) has been widely appreciated as an important strategy for sustainable development. In line with this, an increasing number of cities globally have launched low carbon practices in recent years and gained various types of experience. However, it appears that existing studies do not present methods of how to use these valuable LCC experience in solving new problems. This study therefore introduces an experience mining approach to assist decision‐makers in reusing previous experience when tailoring LCC development strategies. The mining approach consists of three processes, namely, collecting historical cases which have been experiencing LCC, establishing LCC experience base, and mining similar experience cases. This study innovates the existing experience mining approach by introducing a two‐step mining process with considering the perspective of problem‐based urban characteristics (PBUCs) and the perspective of solution‐based urban characteristics (SBUCs). The application of the introduced mining approach has been demonstrated by a case study, where Shenyang’s energy structure is adopted as the target problem. The new experience mining approach provides a valuable reference for decision‐makers to retrieve similar cases for improving LCC development with the consideration of city characteristics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156189/2/sd2046_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156189/1/sd2046.pd

    Assessing the Inbound Tourism Efficiency of European Countries in China: 2006-2019

    Get PDF
    Assessing inbound tourism efficiency helps to understand the potential levels and constraints of inbound tourism flows. In this study, 35 European countries and China were selected as samples and influencing factors oftourism efficiency were constructed within the gravity model (GM) and stochastic frontier analysis (SFA). Taking into account individual heterogeneity, a true fixed-effects stochastic frontier gravity model (TFE-SFA-GM) was developed and empirically analysed using data from 2006 to 2019. The results show that (1) the inbound tourism efficiency of European countries in China is jointly affected by many core factors, such as economic scale, geographic distance, and population size on both sides; (2) the inefficiency factors that affect the inbound tourism efficiency of European countries in China are diversified;(3) the inbound tourism efficiency of European countries in China generally shows an upward trend during the sample period, but there are significant differences in the gap between the frontier level of inbound tourism flow in China and the actual inbound tourism flow. These findings imply that to better attract European tourists, China must continue to maintain and strengthen economic and trade relations with European countries, create a favourable security environment for tourism, highlight the integration of international tourism resources with Chinese culture, and continue to promote them in Europ

    Energy and Environmental Efficiency Evaluation of Transportation Systems in China’s 255 Cities

    Get PDF
    China’s transportation sector suffers from excessive energy consumption and serious pollutant emissions. There is increasing pressure to improve energy and environmental efficiency (EEE). This paper researches the EEE of transportation systems in 255 Chinese cities from 2015 to 2019 with the assistance of the super-efficiency SBM model. Research results show that the five-year average EEE of the Chinese transportation system is 0.4420, indicating an overall low performance, with most regions still needing improvement. There are significant differences in the transportation system EEE between cities, with Guangzhou, Maoming, and Zhoushan ranking in the top three, and Heihe, Xining, and Taiyuan in the bottom. Cities with a better economic base, developed water systems and more relevant policy documents do better in energy use and environmental protection compared to other cities. Moreover, the development of the transportation systems is uneven, with noticeable regional differences. The general trend is that cities located in the eastern have better transportation systems EEE than cities in other economic zones. The findings should have a far-reaching impact on the sustainable development of cities. It also provides an essential reference for the research on EEE efficiency of transportation systems in China and other countries

    Identification of the Key Influencing Factors of Urban Rail Transit Station Resilience against Disasters Caused by Rainstorms

    No full text
    Improving the ability of the urban rail transit system to cope with rainstorm disasters is of great significance to ensure the safe travel of residents. In this study, a model of the hierarchical relationship of the influencing factors is constructed from the resilience perspective, in order to research the action mechanisms of the influencing factors of urban rail transit stations susceptible to rainstorm disaster. Firstly, the concept of resilience and the three attributes (resistance, recovery, and adaptability) are interpreted. Based on the relevant literature, 20 influencing factors are discerned from the 3 attributes of the resilience of urban rail transit stations. Subsequently, an interpretative structural model (ISM) is utilised to analyse the hierarchical relationship among the influencing factors. The key influencing factors of station resilience are screened out using social network analysis (SNA). Combined with ISM and SNA for analysis, the result shows that the key influencing factors are: “Flood prevention monitoring capability”; “Water blocking capacity”; “Flood prevention capital investment”; “Personnel cooperation ability”; “Emergency plan for flood prevention”; “Flood prevention training and drill”; “Publicity and education of flood prevention knowledge”; and “Regional economic development level”. Therefore, according to the critical influencing factors and the action path of the resilience influencing factors, station managers can carry out corresponding flood control work, providing a reference for enhancing the resilience of urban rail transit stations

    Exploring the Interactive Coercing Relationship between Urban Rail Transit and the Ecological Environment

    No full text
    The Chinese environment is experiencing the “U-Type” course from sharp deterioration to significant improvement. In order to achieve the fundamental improvement of the ecological environment, China has implemented several relevant policies and strategies. Among them, the development of urban rail transit, as an essential measure to improve the ecological environment in China, has attracted more and more attention, but the research on the interactive coercion relationship between rail transit and the ecological environment is minimal. Therefore, this study selected ten cities opening urban rail transit before 2005 in mainland China as research objects and established an urban rail transit and ecological environment comprehensive evaluation index system. Then, the interactive coercing model and coupling coordination model were used, and the dynamic relationship between urban rail transit and the ecological environment was explored. The research results in this study showed that (1) there is an apparent interactive coercion relationship between urban rail transit and the ecological environment, and the evolution trajectory conforms to a double exponential curve. (2) From 2006 to 2019, Wuhan’s ecological environment pressure index showed a continuous downward trend. The ecological environment improved the fastest. The rest of the cities showed a trend of first rising and then falling. (3) The type of coupling coordination degree of urban rail transit and ecological environment showed a changing coordination trend from severe incoordination—slight to incoordination—basic to coordination—good. Beijing has the highest degree of overall coordinated development in urban rail transit and the ecological environment. The results of this study can provide a theoretical reference for the realisation of the virtuous circle development of rail transit and the ecological environment

    Identification of the Key Influencing Factors of Urban Rail Transit Station Resilience against Disasters Caused by Rainstorms

    No full text
    Improving the ability of the urban rail transit system to cope with rainstorm disasters is of great significance to ensure the safe travel of residents. In this study, a model of the hierarchical relationship of the influencing factors is constructed from the resilience perspective, in order to research the action mechanisms of the influencing factors of urban rail transit stations susceptible to rainstorm disaster. Firstly, the concept of resilience and the three attributes (resistance, recovery, and adaptability) are interpreted. Based on the relevant literature, 20 influencing factors are discerned from the 3 attributes of the resilience of urban rail transit stations. Subsequently, an interpretative structural model (ISM) is utilised to analyse the hierarchical relationship among the influencing factors. The key influencing factors of station resilience are screened out using social network analysis (SNA). Combined with ISM and SNA for analysis, the result shows that the key influencing factors are: “Flood prevention monitoring capability”; “Water blocking capacity”; “Flood prevention capital investment”; “Personnel cooperation ability”; “Emergency plan for flood prevention”; “Flood prevention training and drill”; “Publicity and education of flood prevention knowledge”; and “Regional economic development level”. Therefore, according to the critical influencing factors and the action path of the resilience influencing factors, station managers can carry out corresponding flood control work, providing a reference for enhancing the resilience of urban rail transit stations

    Fabrication and characterization of magnetic eucalyptus carbon for efficient Cr(VI) removal in aqueous solution and its mechanisms

    No full text
    For an exhaustive removal of Cr(VI), three different types of biochar were prepared, modified and evaluated for Cr(VI) removal from wastewater. Magnetic eucalyptus biochar (MBC) was synthesized via a facile pyrolysis process of eucalyptus biochar pretreated with FeCl3 firstly coupled with K2CO3 activation. As a comparison, raw biochar (BC) and FeCl3 modified biochar (FBC) were prepared. The physicochemical property of adsorbent synthesis and removal mechanism was examined using BET, SEM with EDS, zeta potential, XRD, FTIR, XPS and Vibrating sample magnetometer (VSM), and the effect of various reaction conditions and parameters were evaluated for Cr(VI) removal. Results demonstrated that compared to BC and FBC, MBC has a larger specific surface area (870.3264 m2/g), higher content of Fe mainly existed as γ-Fe2O3 and Fe3O4, and higher zeta potential (10.66). This is due to the significant alleviation of pore blockage caused by iron oxides and more efficient conversion of iron oxides with the participation of K2CO3 during modification process. Upon batch tests, the removal efficiency could achieve more than 91% for 200 mg/L Cr(VI) solution with optimum adsorbent dosage (0.01 g) at desired acid condition (pH = 2) within 9 h. The separation behavior of MBC for Cr(VI) was highly identical with elovich and Freundlich model. MBC showed better adsorption performance up to three cycles and under various co-existing ions. Besides, the removal ability of MBC gained an obvious increase of 2–5 folds and 3–10 folds at different initial Cr(VI) concentrations, compared with BC and FBC. Characterization analyses unraveled that physicochemical removal process was responsible for the efficient elimination of Cr(VI) in an aqueous solution, resulting from adsorption, electrostatic attraction, pore filling, complexation, ion exchange, redox reaction and precipitation due to the fabrication of iron oxides into biochar

    Retinoic Acid–PPARα Mediates β‑Carotene Resistance to Placental Dysfunction Induced by Deoxynivalenol

    No full text
    Deoxynivalenol (DON), one of the most polluted mycotoxins in the environment and food, has been proven to have strong embryonic and reproductive toxicities. However, the effects of DON on placental impairment and effective interventions are still unclear. This study investigated the effect of β-carotene on placental functional impairment and its underlying molecular mechanism under DON exposure. Adverse pregnancy outcomes were caused by intraperitoneal injection of DON from 13.5 to 15.5 days of gestation in mice, resulting in higher enrichment of DON in placenta than in other tissue samples. Interestingly, 0.1% β-carotene dietary supplementation could significantly alleviate DON-induced pregnancy outcomes. Additionally, in vivo and in vitro placental barrier models demonstrated the association of DON-induced placental function impairment with placental permeability barrier disruption, angiogenesis impairment, and oxidative stress induction. Moreover, β-carotene regulated DON-induced placental toxicity by activating the expressions of claudin 1, zonula occludens-1, and vascular endothelial growth factor-A through retinoic acid–peroxisome proliferator-activated receptor α signaling
    corecore