157,598 research outputs found
An advanced meshless method for time fractional diffusion equation
Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations
Geometries and energetics of methanol–ethanol clusters: a VUV laser/time-of-flight mass spectrometry and density functional theory study
Hydrogen-bonded clusters, formed above liquid methanol (Me) and ethanol (Et) mixtures of various compositions, were entrained in a supersonic jet and probed using 118 nm vacuum ultraviolet (VUV) laser single-photon ionization/time-of-flight mass spectrometry. The spectra are dominated by protonated cluster ions, formed by ionizing hydrogen-bonded MemEtn neutrals, m = 0–4, n = 0–3, and m + n = 2–5. The structures and energetics of the neutral and ionic species were investigated using both the all-atom optimized potential for liquid state, OPLS-AA, and the density functional (DFT) calculations. The energetic factors affecting the observed cluster distributions were examined. Calculations indicate that the large change in binding energy going from trimer to tetramer can be attributed more to pair-wise interactions than to cooperativity effects
Low-lying ud anti-s anti-s configurations in a non-relativistic constituent quark model
The energies of the low-lying isoscalar and isovector ud anti-s anti-s
configurations with spin-parity J^P=0^+, 1^+, and 2^+ are calculated in a
non-relativistic constituent quark model by use of the variational method. The
contributions of various parts of the quark-quark interacting potentials
including the s-channel interaction are investigated, and the effect of
different forms of confinement potential is examined. The model parameters are
determined by the same method as in our previous work, and they still can
satisfactorily describe the nucleon-nucleon scattering phase shifts and the
hyperon-nucleon cross sections. The parameters of the s-channel interaction are
fixed by the masses of K and K^* mesons, for which the size parameter is taken
to be two possible values. When it is chosen as the same as baryons', the
numerical results show that the masses of all the ud anti-s anti-s
configurations are higher than the corresponding meson-meson thresholds. But
when the size parameter for the K and K^* mesons is adjusted to be smaller than
that for the baryons, the ud anti-s anti-s configuration with I=0 and J^P=1^+
is found to lie lower than the K^*K^* threshold, furthermore, this state has a
very small KK^* component and the interaction matrix elements between this
state and KK^* is comparatively small, thus its coupling to the KK^* channel
will consequently be weak and it might be regarded as a possible tetraquark
candidate.Comment: 17 pages, 1 figur
Spin squeezing: transforming one-axis-twisting into two-axis-twisting
Squeezed spin states possess unique quantum correlation or entanglement that
are of significant promises for advancing quantum information processing and
quantum metrology. In recent back to back publications [C. Gross \textit{et al,
Nature} \textbf{464}, 1165 (2010) and Max F. Riedel \textit{et al, Nature}
\textbf{464}, 1170 (2010)], reduced spin fluctuations are observed leading to
spin squeezing at -8.2dB and -2.5dB respectively in two-component atomic
condensates exhibiting one-axis-twisting interactions (OAT). The noise
reduction limit for the OAT interaction scales as , which
for a condensate with atoms, is about 100 times below standard
quantum limit. We present a scheme using repeated Rabi pulses capable of
transforming the OAT spin squeezing into the two-axis-twisting type, leading to
Heisenberg limited noise reduction , or an extra 10-fold
improvement for .Comment: 4 pages, 3 figure
Corrections to Tribimaximal Mixing from Nondegenerate Phases
We propose a seesaw scenario that possible corrections to the tribimaximal
pattern of lepton mixing are due to the small phase splitting of the
right-handed neutrino mass matrix. we show that the small deviations can be
expressed analytically in terms of two splitting parameters( and
) in the leading order. The solar mixing angle favors a
relatively smaller value compared to zero order value (), and the
Dirac type CP phase chooses a nearly maximal one. The two Majorana
type CP phases and turn out to be a nearly linear dependence.
Also a normal hierarchy neutrino mass spectrum is favored due to the stability
of perturbation calculations.Comment: 19 pages 6 figures, Accepted by Mod. Phy. Lett.
Entanglement and interference between different degrees of freedom of photons states
In this paper, photonic entanglement and interference are described and
analyzed with the language of quantum information process. Correspondingly, a
photon state involving several degrees of freedom is represented in a new
expression based on the permutation symmetry of bosons. In this expression,
each degree of freedom of a single photon is regarded as a qubit and operations
on photons as qubit gates. The two-photon Hong-Ou-Mandel interference is well
interpreted with it. Moreover, the analysis reveals the entanglement between
different degrees of freedom in a four-photon state from parametric down
conversion, even if there is no entanglement between them in the two-photon
state. The entanglement will decrease the state purity and photon interference
visibility in the experiments on a four-photon polarization state.Comment: 11 pages and 2 figure
Electrical Control of Dynamic Spin Splitting Induced by Exchange Interaction as Revealed by Time Resolved Kerr Rotation in a Degenerate Spin-Polarized Electron Gas
The manipulation of spin degree of freedom have been demonstrated in spin
polarized electron plasma in a heterostructure by using exchange-interaction
induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as
revealed by time resolved Kerr rotation. The measured spin splitting increases
from 0.256meV to 0.559meV as the bias varies from -0.3V to -0.6V. Both the sign
switch of Kerr signal and the phase reversal of Larmor precessions have been
observed with biases, which all fit into the framework of
exchange-interaction-induced spin splitting. The electrical control of it may
provide a new effective scheme for manipulating spin-selected transport in spin
FET-like devices.Comment: 8 pages, 3 figures ; added some discussion
Spin Dynamics in the Second Subband of a Quasi Two Dimensional System Studied in a Single Barrier Heterostructure by Time Resolved Kerr Rotation
By biasing a single barrier heterostructure with a 500nm-thick GaAs layer as
the absorption layer, the spin dynamics for both of the first and second
subband near the AlAs barrier are examined. We find that when simultaneously
scanning the photon energy of both the probe and pump beams, a sign reversal of
the Kerr rotation (KR) takes place as long as the probe photons break away the
first subband and probe the second subband. This novel feature, while stemming
from the exchange interaction, has been used to unambiguously distinguish the
different spin dynamics ( and ) for the first and second
subbands under the different conditions by their KR signs (negative for
and positive for ). In the zero magnetic field, by scanning
the wavelength towards the short wavelength, decreases in accordance
with the D'yakonov-Perel' (DP) spin decoherence mechanism. At 803nm,
(450ps) becomes ten times longer than (50ps). However, the
value of at 803nm is roughly the same as the value of at
815nm. A new feature has been disclosed at the wavelength of 811nm under the
bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times
( and ) and the effective factors ( and
) all display a sudden change, due to the "resonant" spin exchange
coupling between two spin opposite bands.Comment: 9pages, 3 figure
- …