231,524 research outputs found

    Optimal controllers for finite wordlength implementation

    Get PDF
    When a controller is implemented in a digital computer, with A/D and D/A conversion, the numerical errors of the computation can drastically affect the performance of the control system. There exists realizations of a given controller transfer function yielding arbitrarily large effects from computational errors. Since, in general, there is no upper bound, it is important to have a systematic way of reducing these effects. Optimum controller designs are developed which take account of the digital round-off errors in the controller implementation and in the A/D and D/A converters. These results provide a natural extension to the Linear Quadratic Gaussian (LQG) theory since they reduce to the standard LQG controller when infinite precision computation is used. But for finite precision the separation principle does not hold

    Thermal loading in the laser holography nondestructive testing of a composite structure

    Get PDF
    A laser holographic interferometry method that has variable sensitivity to surface deformation was applied to the investigation of composite test samples under thermal loading. A successful attempt was made to detect debonds in a fiberglass-epoxy-ceramic plate. Experimental results are presented along with the mathematical analysis of the physical model of the thermal loading and current conduction in the composite material

    Extraordinary variability and sharp transitions in a maximally frustrated dynamic network

    Get PDF
    Using Monte Carlo and analytic techniques, we study a minimal dynamic network involving two populations of nodes, characterized by different preferred degrees. Reminiscent of introverts and extroverts in a population, one set of nodes, labeled \textit{introverts} (II), prefers fewer contacts (a lower degree) than the other, labeled \textit{extroverts} (EE). As a starting point, we consider an \textit{extreme} case, in which an II simply cuts one of its links at random when chosen for updating, while an EE adds a link to a random unconnected individual (node). The model has only two control parameters, namely, the number of nodes in each group, NIN_{I} and NEN_{E}). In the steady state, only the number of crosslinks between the two groups fluctuates, with remarkable properties: Its average (XX) remains very close to 0 for all NI>NEN_{I}>N_{E} or near its maximum (NNINE\mathcal{N}\equiv N_{I}N_{E}) if NI<NEN_{I}<N_{E}. At the transition (NI=NEN_{I}=N_{E}), the fraction X/NX/\mathcal{N} wanders across a substantial part of [0,1][0,1], much like a pure random walk. Mapping this system to an Ising model with spin-flip dynamics and unusual long-range interactions, we note that such fluctuations are far greater than those displayed in either first or second order transitions of the latter. Thus, we refer to the case here as an `extraordinary transition.' Thanks to the restoration of detailed balance and the existence of a `Hamiltonian,' several qualitative aspects of these remarkable phenomena can be understood analytically.Comment: 6 pages, 3 figures, accepted for publication in EP

    Extreme Thouless effect in a minimal model of dynamic social networks

    Full text link
    In common descriptions of phase transitions, first order transitions are characterized by discontinuous jumps in the order parameter and normal fluctuations, while second order transitions are associated with no jumps and anomalous fluctuations. Outside this paradigm are systems exhibiting `mixed order transitions' displaying a mixture of these characteristics. When the jump is maximal and the fluctuations range over the entire range of allowed values, the behavior has been coined an `extreme Thouless effect'. Here, we report findings of such a phenomenon, in the context of dynamic, social networks. Defined by minimal rules of evolution, it describes a population of extreme introverts and extroverts, who prefer to have contacts with, respectively, no one or everyone. From the dynamics, we derive an exact distribution of microstates in the stationary state. With only two control parameters, NI,EN_{I,E} (the number of each subgroup), we study collective variables of interest, e.g., XX, the total number of II-EE links and the degree distributions. Using simulations and mean-field theory, we provide evidence that this system displays an extreme Thouless effect. Specifically, the fraction X/(NINE)X/\left( N_{I}N_{E}\right) jumps from 00 to 11 (in the thermodynamic limit) when NIN_{I} crosses NEN_{E}, while all values appear with equal probability at NI=NEN_{I}=N_{E}.Comment: arXiv admin note: substantial text overlap with arXiv:1408.542

    Holographic nondestructive tests performed on composite samples of ceramic-epoxy-fiberglass sandwich structure

    Get PDF
    When a hologram storing more than one wave is illuminated with coherent light, the reconstructed wave fronts interfere with each other or with any other phase-related wave front derived from the illuminating source. This multiple wave front comparison is called holographic interferometry, and its application is called holographic nondestructive testing (HNDT). The theoretical aspects of HNDT techniques and the sensitivity of the holographic system to the geometrical placement of the optical components are briefly discussed. A unique HNDT system which is mobile and possesses variable sensitivity to stress amplitude is discribed, the experimental evidence of the application of this system to the testing of the hidden debonds in a ceramic-epoxy-fiberglass structure used for sample testing of the radome of the Pershing missile system is presented

    Two-stage Turing model for generating pigment patterns on the leopard and the jaguar

    Get PDF
    Based on the results of phylogenetic analysis, which showed that flecks are the primitive pattern of the felid family and all other patterns including rosettes and blotches develop from it, we construct a Turing reaction-diffusion model which generates spot patterns initially. Starting from this spotted pattern, we successfully generate patterns of adult leopards and jaguars by tuning parameters of the model in the subsequent phase of patterning
    corecore