5 research outputs found

    ARSH-FATI a novel metaheuristic for cluster head selection in wireless sensor networks

    No full text
    IEEE Wireless sensor network (WSN) consists of a large number of sensor nodes distributed over a certain target area. The WSN plays a vital role in surveillance, advanced healthcare, and commercialized industrial automation. Enhancing energy-efficiency of the WSN is a prime concern because higher energy consumption restricts the lifetime (LT) of the network. Clustering is a powerful technique widely adopted to increase LT of the network and reduce the transmission energy consumption. In this article (LT) we develop a novel ARSH-FATI-based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called novel ranked-based clustering (NRC) to reduce the communication energy consumption of the sensor nodes while efficiently enhancing LT of the network. Unlike other population-based algorithms ARSH-FATI-CHS dynamically switches between exploration and exploitation of the search process during run-time to achieve higher performance trade-off and significantly increase LT of the network. ARSH-FATI-CHS considers the residual energy, communication distance parameters, and workload during cluster heads (CHs) selection. We simulate our proposed ARSH-FATI-CHS and generate various results to determine the performance of the WSN in terms of LT. We compare our results with state-of-the-art particle swarm optimization (PSO) and prove that ARSH-FATI-CHS approach improves the LT of the network by ∼25%\sim \text{25}\%

    ARSH-FATI a Novel Metaheuristic for Cluster Head Selection in Wireless Sensor Networks

    Full text link
    Wireless sensor network (WSN) consists of a large number of sensor nodes distributed over a certain target area. The WSN plays a vital role in surveillance, advanced healthcare, and commercialized industrial automation. Enhancing energy-efficiency of the WSN is a prime concern because higher energy consumption restricts the lifetime (LT) of the network. Clustering is a powerful technique widely adopted to increase LT of the network and reduce the transmission energy consumption. In this article (LT) we develop a novel ARSH-FATI-based Cluster Head Selection (ARSH-FATI-CHS) algorithm integrated with a heuristic called novel ranked-based clustering (NRC) to reduce the communication energy consumption of the sensor nodes while efficiently enhancing LT of the network. Unlike other population-based algorithms ARSH-FATI-CHS dynamically switches between exploration and exploitation of the search process during run-time to achieve higher performance trade-off and significantly increase LT of the network. ARSH-FATI-CHS considers the residual energy, communication distance parameters, and workload during cluster heads (CHs) selection. We simulate our proposed ARSH-FATI-CHS and generate various results to determine the performance of the WSN in terms of LT. We compare our results with state-of-the-art particle swarm optimization (PSO) and prove that ARSH-FATI-CHS approach improves the LT of the network by ∼25%

    Funnel plot for adequate adherence to antiretroviral therapy in China.

    No full text
    <p>Panel A: Funnel Plot before study with <30 participants was excluded, Freeman-Tukey Double arcsine transformation was used, Egger’S Linear Regression Test (t = -0.282, P = 0.779); Panel B: Funnel Plot after study with <30 participants was excluded, Egger’S Linear Regression Test (t = -0.365, P = 0.717).</p

    Doubly and Triply Coupled Nanowire Antennas

    No full text
    Nanoantenna is one of the most important optical components for light harvesting. In this study, we show experimental evidence of interactions between coupled nanowires by comparing the fluorescence properties of quantum dots on single nanowire as well as doubly and triply coupled nanowire arrays. Because of the localized surface plasmon mode, there are strong polarization dependences in this photon–plasmon–exciton conversion process. It is interesting that both the polarization-dependent enhancement and the degree of fluorescence polarization are more pronounced for triply coupled nanowires than that of doubly coupled nanowire, while the case of single nanowire is weakest. Our theoretical analysis indicates the above phenomena can be ascribed to the coupled plasmon from the nanowire antennas. Our investigations demonstrate a potential method to control the polarization of emitters using coupled nanowire arrays
    corecore