28 research outputs found

    Many Ways to Be Lonely: Fine-Grained Characterization of Loneliness and Its Potential Changes in COVID-19

    Full text link
    Loneliness has been associated with negative outcomes for physical and mental health. Understanding how people express and cope with various forms of loneliness is critical for early screening and targeted interventions to reduce loneliness, particularly among vulnerable groups such as young adults. To examine how different forms of loneliness and coping strategies manifest in loneliness self-disclosure, we built a dataset, FIG-Loneliness (FIne-Grained Loneliness) by using Reddit posts in two young adult-focused forums and two loneliness related forums consisting of a diverse age group. We provided annotations by trained human annotators for binary and fine-grained loneliness classifications of the posts. Trained on FIG-Loneliness, two BERT-based models were used to understand loneliness forms and authors' coping strategies in these forums. Our binary loneliness classification achieved an accuracy above 97%, and fine-grained loneliness category classification reached an average accuracy of 77% across all labeled categories. With FIG-Loneliness and model predictions, we found that loneliness expressions in the young adults related forums were distinct from other forums. Those in young adult-focused forums were more likely to express concerns pertaining to peer relationship, and were potentially more sensitive to geographical isolation impacted by the COVID-19 pandemic lockdown. Also, we showed that different forms of loneliness have differential use in coping strategies

    A Unifying Framework for Combining Complementary Strengths of Humans and ML toward Better Predictive Decision-Making

    Full text link
    Hybrid human-ML systems are increasingly in charge of consequential decisions in a wide range of domains. A growing body of empirical and theoretical work has advanced our understanding of these systems. However, existing empirical results are mixed, and theoretical proposals are often mutually incompatible. In this work, we propose a unifying framework for understanding conditions under which combining the complementary strengths of humans and ML leads to higher quality decisions than those produced by each of them individually -- a state which we refer to as human-ML complementarity. We focus specifically on the context of human-ML predictive decision-making and investigate optimal ways of combining human and ML predictive decisions, accounting for the underlying sources of variation in their judgments. Within this scope, we present two crucial contributions. First, taking a computational perspective of decision-making and drawing upon prior literature in psychology, machine learning, and human-computer interaction, we introduce a taxonomy characterizing a wide range of criteria across which human and machine decision-making differ. Second, formalizing our taxonomy allows us to study how human and ML predictive decisions should be aggregated optimally. We show that our proposed framework encompasses several existing models of human-ML complementarity as special cases. Last but not least, an initial exploratory analysis of our framework presents a critical insight for future work in human-ML complementarity: the mechanism by which we combine human and ML judgments should be informed by the underlying causes of divergence in their decisions.Comment: 21 pages, 1 figur

    Modeling Attrition in Recommender Systems with Departing Bandits

    Full text link
    Traditionally, when recommender systems are formalized as multi-armed bandits, the policy of the recommender system influences the rewards accrued, but not the length of interaction. However, in real-world systems, dissatisfied users may depart (and never come back). In this work, we propose a novel multi-armed bandit setup that captures such policy-dependent horizons. Our setup consists of a finite set of user types, and multiple arms with Bernoulli payoffs. Each (user type, arm) tuple corresponds to an (unknown) reward probability. Each user's type is initially unknown and can only be inferred through their response to recommendations. Moreover, if a user is dissatisfied with their recommendation, they might depart the system. We first address the case where all users share the same type, demonstrating that a recent UCB-based algorithm is optimal. We then move forward to the more challenging case, where users are divided among two types. While naive approaches cannot handle this setting, we provide an efficient learning algorithm that achieves O~(T)\tilde{O}(\sqrt{T}) regret, where TT is the number of users.Comment: Accepted at AAAI 202

    A Field Test of Bandit Algorithms for Recommendations: Understanding the Validity of Assumptions on Human Preferences in Multi-armed Bandits

    Full text link
    Personalized recommender systems suffuse modern life, shaping what media we read and what products we consume. Algorithms powering such systems tend to consist of supervised learning-based heuristics, such as latent factor models with a variety of heuristically chosen prediction targets. Meanwhile, theoretical treatments of recommendation frequently address the decision-theoretic nature of the problem, including the need to balance exploration and exploitation, via the multi-armed bandits (MABs) framework. However, MAB-based approaches rely heavily on assumptions about human preferences. These preference assumptions are seldom tested using human subject studies, partly due to the lack of publicly available toolkits to conduct such studies. In this work, we conduct a study with crowdworkers in a comics recommendation MABs setting. Each arm represents a comic category, and users provide feedback after each recommendation. We check the validity of core MABs assumptions-that human preferences (reward distributions) are fixed over time-and find that they do not hold. This finding suggests that any MAB algorithm used for recommender systems should account for human preference dynamics. While answering these questions, we provide a flexible experimental framework for understanding human preference dynamics and testing MABs algorithms with human users. The code for our experimental framework and the collected data can be found at https://github.com/HumainLab/human-bandit-evaluation.Comment: Accepted to CHI. 16 pages, 6 figure
    corecore