10,958 research outputs found

    Metamagnetic Transition in Na0.85_{0.85}CoO2_2 Single Crystals

    Full text link
    We report the magnetization, specific heat and transport measurements of high quality Na0.85_{0.85}CoO2_2 single crystals in applied magnetic fields up to 14T. In high temperatures, the system is in a paramagnetic phase. It undergoes a magnetic phase transition below about 20K. When the field is applied along the c-axis, the measurement data of magnetization, specific heat and magnetoresistance reveal a metamagnetic transition from an antiferromagnetic state to a quasi-ferromagnetic state at about 8T in low temperatures. However, no transition is observed in the magnetization measurements up to 14T when the field is applied perpendicular to the c-axis. The low temperature magnetic phase diagram of Na0.85_{0.85}CoO2_2 is determined.Comment: 4 pages, 5 figure

    Fate of non-Fermi liquid behavior in QED3_{3} at finite chemical potential

    Full text link
    The damping rate of two-dimensional massless Dirac fermions exhibit non-Fermi liquid behavior, ϵ1/2\propto \epsilon^{1/2}, due to gauge field at zero temperature and zero chemical potential. We study the fate of this behavior at finite chemical potential. We fist calculate explicitly the temporal and spatial components of vacuum polarization functions. The analytical expressions imply that the temporal component of gauge field develops a static screening length at finite chemical potential while the transverse component remains long-ranged owing to gauge invariance. We then calculate the fermion damping rate and show that the temporal gauge field leads to normal Fermi liquid behavior but the transverse gauge field leads to non-Fermi liquid behavior ϵ2/3\propto \epsilon^{2/3} at zero temperature. This energy-dependence is more regular than ϵ1/2\propto \epsilon^{1/2} and does not change as chemical potential varies.Comment: 12 pages, 1 figur

    Multiresolution spatiotemporal mechanical model of the heart as a prior to constrain the solution for 4D models of the heart.

    Get PDF
    In several nuclear cardiac imaging applications (SPECT and PET), images are formed by reconstructing tomographic data using an iterative reconstruction algorithm with corrections for physical factors involved in the imaging detection process and with corrections for cardiac and respiratory motion. The physical factors are modeled as coefficients in the matrix of a system of linear equations and include attenuation, scatter, and spatially varying geometric response. The solution to the tomographic problem involves solving the inverse of this system matrix. This requires the design of an iterative reconstruction algorithm with a statistical model that best fits the data acquisition. The most appropriate model is based on a Poisson distribution. Using Bayes Theorem, an iterative reconstruction algorithm is designed to determine the maximum a posteriori estimate of the reconstructed image with constraints that maximizes the Bayesian likelihood function for the Poisson statistical model. The a priori distribution is formulated as the joint entropy (JE) to measure the similarity between the gated cardiac PET image and the cardiac MRI cine image modeled as a FE mechanical model. The developed algorithm shows the potential of using a FE mechanical model of the heart derived from a cardiac MRI cine scan to constrain solutions of gated cardiac PET images

    Spatially and Spectrally Resolved Observations of a Zebra Pattern in Solar Decimetric Radio Burst

    Full text link
    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral (~ 1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope (FASR) Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 14 December 2006. By using OVSA to calibrate the FST the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field (NLFFF) extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed on the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance (DPR) model in which the radio emission occurs in resonance layers where the upper hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.Comment: Accepted for publication in Ap

    Full one-loop electroweak corrections to h0(H0,A0)H±Wh^0(H^0,A^0) H^\pm W^\mp associated productions at e+ee^+e^- linear colliders

    Get PDF
    We study the complete one-loop electroweak(EW) corrections to the processes of single charged Higgs boson production associated with a neutral Higgs boson(h0,H0,A0)(h^0,H^0,A^0) and a gauge boson W±W^\pm in the framework of the minimal supersymmetric standard model(MSSM). Numerical results at the SPS1a{\rm SPS1a'} benchmark point as proposed in the SPA project, are presented for demonstration. We find that for the process e+eh0H±We^+e^-\to h^0H^\pm W^\mp the EW relative correction can be either positive or negative and in the range of 15-15%\sim 20% in our chosen parameter space. While for the processes e+eH0(A0)H±We^+e^-\to H^0(A^0)H^\pm W^\mp the corrections generally reduce the Born cross sections and the EW relative corrections are typically of order 1020-10%\sim -20%.Comment: 22 pages, 20 figures, LaTex, to be appeared in PR

    Current-driven skyrmionium in a frustrated magnetic system

    Full text link
    Magnetic skyrmionium can be used as a nanometer-scale non-volatile information carrier, which shows no skyrmion Hall effect due to its special structure carrying zero topological charge. Here, we report the static and dynamic properties of an isolated nanoscale skyrmionium in a frustrated magnetic monolayer, where the skyrmionium is stabilized by competing interactions. The frustrated skyrmionium has a size of about 1010 nm, which can be further reduced by tuning perpendicular magnetic anisotropy or magnetic field. It is found that the nanoscale skyrmionium driven by the damping-like spin-orbit torque shows directional motion with a favored Bloch-type helicity. A small driving current or magnetic field can lead to the transformation of an unstable N\'eel-type skyrmionium to a metastable Bloch-type skyrmionium. A large driving current may result in the distortion and collapse of the Bloch-type skyrmionium. Our results are useful for the understanding of frustrated skyrmionium physics, which also provide guidelines for the design of spintronic devices based on topological spin textures.Comment: 5 pages, 5 figure

    Gap solitons of a super-Tonks-Girardeau gas in a one-dimensional periodic potential

    Full text link
    We study the stability of gap solitons of the super-Tonks-Girardeau bosonic gas in one-dimensional periodic potential. The linear stability analysis indicates that increasing the amplitude of periodic potential or decreasing the nonlinear interactions, the unstable gap solitons can become stable. In particular, the theoretical analysis and numerical calculations show that, comparing to the lower-family of gap solitons, the higher-family of gap solitons are easy to form near the bottoms of the linear Bloch band gaps. The numerical results also verify that the composition relations between various gap solitons and nonlinear Bloch waves are general and can exist in the super-Tonks-Girardeau phase.Comment: 7 pages,6 figure

    Quantum secure communication scheme with W state

    Full text link
    Recently, Cao et al. proposed a new quantum secure direct communication scheme using W state. In their scheme, the error rate introduced by an eavesdropper who takes intercept-resend attack, is only 8.3%. Actually, their scheme is just a quantum key distribution scheme because the communication parties first create a shared key and then encrypt the secret message using one-time pad. We then present a quantum secure communication scheme using three-qubit W state. In our scheme, the error rate is raised to 25% and it is not necessary for the present scheme to use alternative measurement or Bell basis measurement. We also show our scheme is unconditionally secure.Comment: Comments are welcom
    corecore