17,061 research outputs found

    Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

    Full text link
    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.Comment: 15 pages, 6 figure

    Entanglement control in one-dimensional s=1/2s=1/2 random XY spin chain

    Full text link
    The entanglement in one-dimensional random XY spin systems where the impurities of exchange couplings and the external magnetic fields are considered as random variables is investigated by solving the different spin-spin correlation functions and the average magnetization per spin. The entanglement dynamics near particular locations of the system is also studied when the exchange couplings (or the external magnetic fields) satisfy three different distributions(the Gaussian distribution, double-Gaussian distribution, and bimodal distribution). We find that the entanglement can be controlled by varying the strength of external magnetic field and the different distributions of impurities. Moreover, the entanglement of some nearest-neighboring qubits can be increased for certain parameter values of the three different distributions.Comment: 13 pages, 4 figure

    Variational Deep Semantic Hashing for Text Documents

    Full text link
    As the amount of textual data has been rapidly increasing over the past decade, efficient similarity search methods have become a crucial component of large-scale information retrieval systems. A popular strategy is to represent original data samples by compact binary codes through hashing. A spectrum of machine learning methods have been utilized, but they often lack expressiveness and flexibility in modeling to learn effective representations. The recent advances of deep learning in a wide range of applications has demonstrated its capability to learn robust and powerful feature representations for complex data. Especially, deep generative models naturally combine the expressiveness of probabilistic generative models with the high capacity of deep neural networks, which is very suitable for text modeling. However, little work has leveraged the recent progress in deep learning for text hashing. In this paper, we propose a series of novel deep document generative models for text hashing. The first proposed model is unsupervised while the second one is supervised by utilizing document labels/tags for hashing. The third model further considers document-specific factors that affect the generation of words. The probabilistic generative formulation of the proposed models provides a principled framework for model extension, uncertainty estimation, simulation, and interpretability. Based on variational inference and reparameterization, the proposed models can be interpreted as encoder-decoder deep neural networks and thus they are capable of learning complex nonlinear distributed representations of the original documents. We conduct a comprehensive set of experiments on four public testbeds. The experimental results have demonstrated the effectiveness of the proposed supervised learning models for text hashing.Comment: 11 pages, 4 figure

    How can emerging-market SMEs domestically benefit from their performance in developed countries? Empirical evidence from China

    Get PDF
    Many small and medium-sized enterprises (SMEs) from emerging economies consider entry into developed markets as a way to promote home country performance. Nevertheless, the extant literature aiming at large companies are not applicable to SMEs, and it is unclear how SMEs with a weak resource basis can improve their domestic performance through overseas venturing. This study leverages a resource-based view on data from 377 Chinese SMEs with operations in developed nations. The findings reveal that emerging-market firms’ overseas performance (both financial and non-financial) is positively related to their home country performance, with the technological learning and demonstration effect playing mediating roles. The relationship between host country performance and technological learning is positively moderated by firms’ resource integration capability. This study is among the first to identify the mechanism through which emerging-market SMEs’ operations in developed countries affects their home country performance. The findings are helpful in guiding emerging-market SMEs’ internationalization

    Longitudinal Schottky spectra of a bunched Ne10+ ion beam at the CSRe

    Full text link
    The longitudinal Schottky spectra of a radio-frequency (RF) bunched and electron cooled 22Ne10+ ion beam at 70 MeV/u have been studied by a newly installed resonant Schottky pick-up at the experimental cooler storage ring (CSRe), at IMP. For an RF-bunched ion beam, a longitudinal momentum spread of has been reached with less than 107 stored ions. The reduction of momentum spread compared with coasting ion beam was observed from Schottky noise signal of the bunched ion beam. In order to prepare the future laser cooling experiment at the CSRe, the RF-bunching power was modulated at 25th, 50th and 75th harmonic of the revolution frequency, effective bunching amplitudes were extracted from the Schottky spectrum analysis. Applications of Schottky noise for measuring beam lifetime with ultra-low intensity of ion beams are presented, and it is relevant to upcoming experiments on laser cooling of relativistic heavy ion beams and nuclear physics at the CSRe.Comment: to be published in Chinese Physics
    • …
    corecore