12,809 research outputs found

    Locating influential nodes via dynamics-sensitive centrality

    Get PDF
    With great theoretical and practical significance, locating influential nodes of complex networks is a promising issues. In this paper, we propose a dynamics-sensitive (DS) centrality that integrates topological features and dynamical properties. The DS centrality can be directly applied in locating influential spreaders. According to the empirical results on four real networks for both susceptible-infected-recovered (SIR) and susceptible-infected (SI) spreading models, the DS centrality is much more accurate than degree, kk-shell index and eigenvector centrality.Comment: 6 pages, 1 table and 2 figure

    Re-Study on the wave functions of Υ(nS)\Upsilon(nS) states in LFQM and the radiative decays of Υ(nS)ηb+γ\Upsilon(nS)\to \eta_b+\gamma

    Full text link
    The Light-front quark model (LFQM) has been applied to calculate the transition matrix elements of heavy hadron decays. However, it is noted that using the traditional wave functions of the LFQM given in literature, the theoretically determined decay constants of the Υ(nS)\Upsilon(nS) obviously contradict to the data. It implies that the wave functions must be modified. Keeping the orthogonality among the nSnS states and fitting their decay constants we obtain a series of the wave functions for Υ(nS)\Upsilon(nS). Based on these wave functions and by analogy to the hydrogen atom, we suggest a modified analytical form for the Υ(nS)\Upsilon(nS) wave functions. By use of the modified wave functions, the obtained decay constants are close to the experimental data. Then we calculate the rates of radiative decays of Υ(nS)ηb+γ\Upsilon(nS)\to \eta_b+\gamma. Our predictions are consistent with the experimental data on decays Υ(3S)ηb+γ\Upsilon(3S)\to \eta_b+\gamma within the theoretical and experimental errors.Comment: 10 pages, 2 figures, 1 table. Typos corrected and more discussions added. accepted for publication in Physical Review

    Accumulation of Dense Core Vesicles in Hippocampal Synapses Following Chronic Inactivity.

    Get PDF
    The morphology and function of neuronal synapses are regulated by neural activity, as manifested in activity-dependent synapse maturation and various forms of synaptic plasticity. Here we employed cryo-electron tomography (cryo-ET) to visualize synaptic ultrastructure in cultured hippocampal neurons and investigated changes in subcellular features in response to chronic inactivity, a paradigm often used for the induction of homeostatic synaptic plasticity. We observed a more than 2-fold increase in the mean number of dense core vesicles (DCVs) in the presynaptic compartment of excitatory synapses and an almost 20-fold increase in the number of DCVs in the presynaptic compartment of inhibitory synapses after 2 days treatment with the voltage-gated sodium channel blocker tetrodotoxin (TTX). Short-term treatment with TTX and the N-methyl-D-aspartate receptor (NMDAR) antagonist amino-5-phosphonovaleric acid (AP5) caused a 3-fold increase in the number of DCVs within 100 nm of the active zone area in excitatory synapses but had no significant effects on the overall number of DCVs. In contrast, there were very few DCVs in the postsynaptic compartments of both synapse types under all conditions. These results are consistent with a role for presynaptic DCVs in activity-dependent synapse maturation. We speculate that these accumulated DCVs can be released upon reactivation and may contribute to homeostatic metaplasticity

    Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors

    Full text link
    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (TT) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-TT resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation dρ/dT=(μ0kB/)λL2d\rho/dT=(\mu_0k_B/\hbar)\lambda^2_L, which bridges the slope of the linear-TT-dependent resistivity (dρ/dTd\rho/dT) to the London penetration depth λL\lambda_L at zero temperature among cuprate superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} and heavy fermion superconductors CeCoIn5_5, where μ0\mu_0 is vacuum permeability, kBk_B is the Boltzmann constant and \hbar is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (DD) approaching the quantum limit D/mD\sim\hbar/m^*, where mm^* is the quasi-particle effective mass.Comment: 8 pages, 2 figures, 1 tabl
    corecore