research

Locating influential nodes via dynamics-sensitive centrality

Abstract

With great theoretical and practical significance, locating influential nodes of complex networks is a promising issues. In this paper, we propose a dynamics-sensitive (DS) centrality that integrates topological features and dynamical properties. The DS centrality can be directly applied in locating influential spreaders. According to the empirical results on four real networks for both susceptible-infected-recovered (SIR) and susceptible-infected (SI) spreading models, the DS centrality is much more accurate than degree, kk-shell index and eigenvector centrality.Comment: 6 pages, 1 table and 2 figure

    Similar works

    Available Versions

    Last time updated on 19/12/2020