20 research outputs found

    Chemical ordering suppresses large-scale electronic phase separation in doped manganites

    Get PDF
    For strongly correlated oxides, it has been a long-standing issue regarding the role of the chemical ordering of the dopants on the physical properties. Here, using unit cell by unit cell superlattice growth technique, we determine the role of chemical ordering of the Pr dopant in a colossal magnetoresistant (La1-yPry)1-xCaxMnO3 (LPCMO) system, which has been well known for its large length-scale electronic phase separation phenomena. Our experimental results show that the chemical ordering of Pr leads to marked reduction of the length scale of electronic phase separations. Moreover, compared with the conventional Pr-disordered LPCMO system, the Pr-ordered LPCMO system has a metal–insulator transition that is ~100 K higher because the ferromagnetic metallic phase is more dominant at all temperatures below the Curie temperature

    Short-term optimization scheduling method of cascade hydropower and photovoltaic complementary system based on pumping station operation strategy

    Get PDF
    With the rapid development of photovoltaic power generation, how to improve the photovoltaic grid connection rate is an urgent problem to be solved. This article proposes an optimized scheduling method for the water and photovoltaic complementary system, taking into account the operation strategy of pump stations to improve the photovoltaic grid connection rate. Firstly, a multi-objective optimization scheduling model is constructed to consider both power generation and output fluctuation, and the uncertainty of photovoltaic power generation is analyzed from multiple perspectives. Then, taking the cascade hydropower stations and surrounding photovoltaic power stations in a river basin in Sichuan as an example, the operation strategy of pump stations is introduced into the water and photovoltaic complementary system, considering different weather scenarios, to reduce the photovoltaic curtailment rate. The study verifies that the introduction of pump stations can effectively increase the photovoltaic grid connection rate, and quantitatively analyzes the pump station capacity configuration under different photovoltaic penetration rates

    An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting

    No full text
    Vast majority of photocatalysts for hydrogen production relies on additional sacrificial agents and noble metal cocatalysts. It is of great importance yet challenging to achieve photocatalytic overall water splitting with decent performance. Here, the authors report Ni2P based photocatalyst assisted by H2O2-craking reaction for overall water splitting with H2 and O2 production of 1507 μmol h−1 g−1 H2 and 702 μmol h−1 g−1

    Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites

    No full text
    Abstract Background Lignocellulosic biomass is the most abundant and renewable terrestrial raw material for conversion into bioproducts and biofuels. However, the low utilization efficiency of lignocellulose causes environmental pollution and resource waste, which limits the large-scale application of bioconversion. The degradation of lignocellulose by microorganisms is an efficient and cost-effective way to overcome the challenge of utilizing plant biomass resources. This work aimed to screen valuable cellulolytic bacteria, explore its molecular mechanism from genomic insights, and investigate the ability of the strain to biodegrade wheat straw. Results Bacillus subtilis (B. subtilis) RLI2019 was isolated from the intestine of Reticulitermes labralis. The strain showed comprehensive enzyme activities related to lignocellulose degradation, which were estimated as 4.06, 1.97, 4.12, 0.74, and 17.61 U/mL for endoglucanase, β-glucosidase, PASC enzyme, filter paper enzyme, and xylanase, respectively. Whole genome sequencing was performed to better understand the genetic mechanism of cellulose degradation. The genome size of B. subtilis RLI2019 was 4,195,306 bp with an average GC content of 43.54%, and the sequence characteristics illustrated an extremely high probability (99.41%) as a probiotic. The genome contained 4,381 protein coding genes with an average GC content of 44.20%, of which 145 genes were classified into six carbohydrate-active enzyme (CAZyme) families and 57 subfamilies. Eight cellulose metabolism enzyme-related genes and nine hemicellulose metabolism enzyme-related genes were annotated by the CAZyme database. The starch and sucrose metabolic pathway (ko00500) was the most enriched with 46 genes in carbohydrate metabolism. B. subtilis RLI2019 was co-cultured with wheat straw for 7 days of fermentation, the contents of neutral detergent fiber, acid detergent fiber, hemicellulose, and lignin were significantly reduced by 5.8%, 10.3%, 1.0%, and 4.7%, respectively. Moreover, the wheat straw substrate exhibited 664.9 μg/mL of reducing sugars, 1.22 U/mL and 6.68 U/mL of endoglucanase and xylanase activities, respectively. Furthermore, the fiber structures were effectively disrupted, and the cellulose crystallinity was significantly reduced from 40.2% to 36.9%. Conclusions The complex diversity of CAZyme composition mainly contributed to the strong cellulolytic attribute of B. subtilis RLI2019. These findings suggest that B. subtilis RLI2019 has favorable potential for biodegradation applications, thus it can be regarded as a promising candidate bacterium for lignocellulosic biomass degradation

    Long noncoding RNA regulates tumor cell proliferation and invasion by epithelial–mesenchymal transition in gastric cancer

    No full text
    Background: The clinical relevance and biological role of tissular AOC4P in gastric cancer (GC) remains to be clarified. Methods: The association between AOC4P expression and clinicopathological characteristics was investigated. In vitro , 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to explore the biological effects of AOC4P on GC cell proliferation, migration, invasion, and apoptosis in MGC-803 and BGC-823 cell lines. In vivo , animal experiments were conducted to confirm the in vitro findings. Quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence were used to investigate the potential mechanisms. Results: Expression levels of AOC4P were significantly higher in tumor tissues than in noncancerous tissues, and patients with high levels of AOC4P had poor overall and disease-free survival. AOC4P expression was correlated with lymphovascular invasion. In vitro , knockdown of AOC4P inhibited tumor cell proliferation, migration, and invasion, and promoted apoptosis of MGC-803 and BGC-823 cells. In vivo , BGC-823 cells transfected with AOC4P siRNA formed smaller and lighter tumors than BGC-823 cells transfected with negative control siRNA in severe combined immunodeficiency mice. Additionally, the si- AOC4P group had less proliferating cells and more apoptotic cells in tumor xenografts compared with the negative control. Mechanistically, knockdown of AOC4P decreased the expression of vimentin and MMP9, while increasing the expression of E-cadherin. Immunofluorescence confirmed the relationship between AOC4P expression and E-cadherin, vimentin, and MMP9 levels in clinical GC specimens. Conclusions: AOC4P promotes tumorigenesis and progression partly through epithelial–mesenchymal transition in GC. Additionally, AOC4P may serve as a prognostic biomarker for clinical decision making

    Additional file 1 of Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites

    No full text
    Additional file 1: Figure S1. Circos genome map of B. subtilis RLI2019. Figure S2. Venn diagram of homologous genes. Figure S3. GO annotation (A) and COG annotation (B) of the genome sequence. Table S1. 16S rRNA similarity alignment of B. subtilis RLI2019 in NCBI database. Table S2. 16S rRNA similarity alignment of B. subtilis RLI2019 in GTDB database. Table S3. Comparative analyses of top 30 kmer sequences with other B. subtilis strains
    corecore