146 research outputs found
New stability results for Einstein scalar gravity
We consider asymptotically anti de Sitter gravity coupled to a scalar field
with mass slightly above the Breitenlohner-Freedman bound. This theory admits a
large class of consistent boundary conditions characterized by an arbitrary
function . An important open question is to determine which admit stable
ground states. It has previously been shown that the total energy is bounded
from below if is bounded from below and the bulk scalar potential
admits a suitable superpotential. We extend this result and show that the
energy remains bounded even in some cases where can become arbitrarily
negative. As one application, this leads to the possibility that in
gauge/gravity duality, one can add a double trace operator with negative
coefficient to the dual field theory and still have a stable vacuum
Towards a Non-Relativistic Holographic Superfluid
We explore the phase structure of a holographic toy model of superfluid
states in non-relativistic conformal field theories. At low background mass
density, we find a familiar second-order transition to a superfluid phase at
finite temperature. Increasing the chemical potential for the probe charge
density drives this transition strongly first order as the low-temperature
superfluid phase merges with a thermodynamically disfavored high-temperature
condensed phase. At high background mass density, the system reenters the
normal phase as the temperature is lowered further, hinting at a
zero-temperature quantum phase transition as the background density is varied.
Given the unusual thermodynamics of the background black hole, however, it
seems likely that the true ground state is another configuration altogether.Comment: 13+5 pages, late
Large-density field theory, viscosity, and "" singularities from string duals
We analyze systems where an effective large-N expansion arises naturally in
gauge theories without a large number of colors: a sufficiently large charge
density alone can produce a perturbative string ('tHooft) expansion. One
example is simply the well-known NS5/F1 system dual to , here viewed as a 5+1 dimensional theory at finite density. This model is
completely stable, and we find that the existing string-theoretic solution of
this model yields two interesting results. First, it indicates that the shear
viscosity is not corrected by effects in this system. For flow
perpendicular to the F1 strings the viscosity to entropy ratio take the usual
value , but for flow parallel to the F1's it vanishes as at low
temperature. Secondly, it encodes singularities in correlation functions coming
from low-frequency modes at a finite value of the momentum along the
directions. This may provide a strong coupling analogue of finite density
condensed matter systems for which fermionic constituents of larger operators
contribute so-called "" singularities. In the NS5/F1 example, stretched
strings on the gravity side play the role of these composite operators. We
explore the analogue for our system of the Luttinger relation between charge
density and the volume bounded by these singular surfaces. This model provides
a clean example where the string-theoretic UV completion of the gravity dual to
a finite density field theory plays a significant and calculable role.Comment: 28 pages. v2: added reference
Heterogeneous Diffusion in Highly Supercooled Liquids
The diffusivity of tagged particles is demonstrated to be very heterogeneous
on time scales comparable to or shorter than the relaxation time
( the stress relaxation time) in a highly supercooled
liquid via 3D molecular dynamics simulation. The particle motions in the
relatively active regions dominantly contribute to the mean square
displacement, giving rise to a diffusion constant systematically larger than
the Einstein-Stokes value. The van Hove self-correlation function is
shown to have a long distance tail which can be scaled in terms of
for t \ls 3\tau_{\alpha}. Its presence indicates heterogeneous diffusion in
the active regions. However, the diffusion process eventually becomes
homogeneous on time scales longer than the life time of the heterogeneity
structure ().Comment: 4 pages, 5 figure
Luttinger's theorem, superfluid vortices, and holography
Strongly coupled field theories with gravity duals can be placed at finite
density in two ways: electric field flux emanating from behind a horizon, or
bulk charged fields outside of the horizon that explicitly source the density.
We discuss field-theoretical observables that are sensitive to this
distinction. If the charged fields are fermionic, we discuss a modified
Luttinger's theorem that holds for holographic systems, in which the sum of
boundary theory Fermi surfaces counts only the charge outside of the horizon.
If the charged fields are bosonic, we show that the the resulting superfluid
phase may be characterized by the coefficient of the transverse Magnus force on
a moving superfluid vortex, which again is sensitive only to the charge outside
of the horizon. For holographic systems these observables provide a
field-theoretical way to distinguish how much charge is held by a dual horizon,
but they may be useful in more general contexts as measures of deconfined (i.e.
"fractionalized") charge degrees of freedom.Comment: 21 pages; version 2: minor changes, version to be published in CQG;
version 3: minor change
Corner contributions to holographic entanglement entropy
The entanglement entropy of three-dimensional conformal field theories
contains a universal contribution coming from corners in the entangling
surface. We study these contributions in a holographic framework and, in
particular, we consider the effects of higher curvature interactions in the
bulk gravity theory. We find that for all of our holographic models, the corner
contribution is only modified by an overall factor but the functional
dependence on the opening angle is not modified by the new gravitational
interactions. We also compare the dependence of the corner term on the new
gravitational couplings to that for a number of other physical quantities, and
we show that the ratio of the corner contribution over the central charge
appearing in the two-point function of the stress tensor is a universal
function for all of the holographic theories studied here. Comparing this
holographic result to the analogous functions for free CFT's, we find fairly
good agreement across the full range of the opening angle. However, there is a
precise match in the limit where the entangling surface becomes smooth, i.e.,
the angle approaches , and we conjecture the corresponding ratio is a
universal constant for all three-dimensional conformal field theories. In this
paper, we expand on the holographic calculations in our previous letter
arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match
published version, typos fixe
Semi-local quantum liquids
Gauge/gravity duality applied to strongly interacting systems at finite
density predicts a universal intermediate energy phase to which we refer as a
semi-local quantum liquid. Such a phase is characterized by a finite spatial
correlation length, but an infinite correlation time and associated nontrivial
scaling behavior in the time direction, as well as a nonzero entropy density.
For a holographic system at a nonzero chemical potential, this unstable phase
sets in at an energy scale of order of the chemical potential, and orders at
lower energies into other phases; examples include superconductors and
antiferromagnetic-type states. In this paper we give examples in which it also
orders into Fermi liquids of "heavy" fermions. While the precise nature of the
lower energy state depends on the specific dynamics of the individual system,
we argue that the semi-local quantum liquid emerges universally at intermediate
energies through deconfinement (or equivalently fractionalization). We also
discuss the possible relevance of such a semi-local quantum liquid to heavy
electron systems and the strange metal phase of high temperature cuprate
superconductors.Comment: 31 pages, 7 figure
Entanglement Entropy from a Holographic Viewpoint
The entanglement entropy has been historically studied by many authors in
order to obtain quantum mechanical interpretations of the gravitational
entropy. The discovery of AdS/CFT correspondence leads to the idea of
holographic entanglement entropy, which is a clear solution to this important
problem in gravity. In this article, we would like to give a quick survey of
recent progresses on the holographic entanglement entropy. We focus on its
gravitational aspects, so that it is comprehensible to those who are familiar
with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity,
minor correction
Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality
Strongly correlated quantum fluids are phases of matter that are
intrinsically quantum mechanical, and that do not have a simple description in
terms of weakly interacting quasi-particles. Two systems that have recently
attracted a great deal of interest are the quark-gluon plasma, a plasma of
strongly interacting quarks and gluons produced in relativistic heavy ion
collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic
gases confined in optical or magnetic traps. These systems differ by more than
20 orders of magnitude in temperature, but they were shown to exhibit very
similar hydrodynamic flow. In particular, both fluids exhibit a robustly low
shear viscosity to entropy density ratio which is characteristic of quantum
fluids described by holographic duality, a mapping from strongly correlated
quantum field theories to weakly curved higher dimensional classical gravity.
This review explores the connection between these fields, and it also serves as
an introduction to the Focus Issue of New Journal of Physics on Strongly
Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The
presentation is made accessible to the general physics reader and includes
discussions of the latest research developments in all three areas.Comment: 138 pages, 25 figures, review associated with New Journal of Physics
special issue "Focus on Strongly Correlated Quantum Fluids: from Ultracold
Quantum Gases to QCD Plasmas"
(http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Strongly%20Correlated%20Quantum%20Fluids%20-%20from%20Ultracold%20Quantum%20Gases%20to%20QCD%20Plasmas
- …