10,162 research outputs found
Acceleration-extended Newton-Hooke symmetry and its dynamical realization
Newton-Hooke group is the nonrelativistic limit of de Sitter (anti-de Sitter)
group, which can be enlarged with transformations that describe constant
acceleration, as well as central charges. We consider a higher order Lagrangian
that is quasi-invariant under the acceleration-extended Newton-Hooke symmetry,
and obtain the Schr\"{o}dinger equation quantizing the Hamiltonian
corresponding to its first order form. We show that the Schr\"{o}dinger
equation is invariant under the acceleration-extended Newton-Hooke
transformations. We also discuss briefly the exotic conformal Newton-Hooke
symmetry in 2+1 dimension.Comment: 14 pages, revtex4; refs added, misleading statements revised, version
to appear in Phys. Lett.
Sequential Wnt Agonist then Antagonist Treatment Accelerates Tissue Repair and Minimizes Fibrosis
Tissue fibrosis compromises organ function and occurs as a potential
long-term outcome in response to acute tissue injuries. Currently, lack of
mechanistic understanding prevents effective prevention and treatment of the
progression from acute injury to fibrosis. Here, we combined quantitative
experimental studies with a mouse kidney injury model and a computational
approach to determine how the physiological consequences are determined by the
severity of ischemia injury, and to identify how to manipulate Wnt signaling to
accelerate repair of ischemic tissue damage while minimizing fibrosis. The
study reveals that Wnt-mediated memory of prior injury contributes to fibrosis
progression, and ischemic preconditioning reduces the risk of death but
increases the risk of fibrosis. Furthermore, we validated the prediction that
sequential combination therapy of initial treatment with a Wnt agonist followed
by treatment with a Wnt antagonist can reduce both the risk of death and
fibrosis in response to acute injuries
Double-Differential Production Cross Sections of Charged Pions in Charged Pion Induced Nuclear Reactions at High Momentums
The double-differential π± production cross sections in interactions of charged pions on targets at high momentums are analyzed by using a multicomponent Erlang distribution which is obtained in the framework of a multisource thermal model. The calculated results are compared and found to be in agreement with the experimental data at the incident momentums of 3, 5, 8, and 12 GeV/c measured by the HARP Collaboration. It is found that the source contributions to the mean momentum of charged particles and to the distribution width of particle momentums decrease with increase of the emission angle, and the source number and temperature do not show an obvious
dependence on the emission angle of the considered particle
Recommended from our members
Nanoelectronics-Biology Frontier: From Nanoscopic Probes for Action Potential Recording in Live Cells to Three-Dimensional Cyborg Tissues
Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly merged in 3D for the first time using macroporous nanoelectronic scaffolds that are analogous to synthetic tissue scaffold and the extracellular matrix in tissue. Free-standing 3D nanoelectronic scaffolds were cultured with neurons, cardiomyocytes and smooth muscle cells to yield electronically-innervated synthetic or ‘cyborg’ tissues. Measurements demonstrate that innervated tissues exhibit similar cell viability as with conventional tissue scaffolds, and importantly, demonstrate that the real-time response to drugs and pH changes can be mapped in 3D through the tissues. These results open up a new field of research, wherein nanoelectronics are merged with biological systems in 3D thereby providing broad opportunities, ranging from a nanoelectronic/tissue platform for real-time pharmacological screening in 3D to implantable ‘cyborg’ tissues enabling closed-loop monitoring and treatment of diseases. Furthermore, the capability of high density scale-up of the above extra- and intracellular nanoscopic probes for action potential recording provide important tools for large-scale high spatio-temporal resolution electrical neural activity mapping in both 2D and 3D, which promises to have a profound impact on many research areas, including the mapping of activity within the brain.Chemistry and Chemical BiologyEngineering and Applied Science
- …