112 research outputs found

    TiAVox: Time-aware Attenuation Voxels for Sparse-view 4D DSA Reconstruction

    Full text link
    Four-dimensional Digital Subtraction Angiography (4D DSA) plays a critical role in the diagnosis of many medical diseases, such as Arteriovenous Malformations (AVM) and Arteriovenous Fistulas (AVF). Despite its significant application value, the reconstruction of 4D DSA demands numerous views to effectively model the intricate vessels and radiocontrast flow, thereby implying a significant radiation dose. To address this high radiation issue, we propose a Time-aware Attenuation Voxel (TiAVox) approach for sparse-view 4D DSA reconstruction, which paves the way for high-quality 4D imaging. Additionally, 2D and 3D DSA imaging results can be generated from the reconstructed 4D DSA images. TiAVox introduces 4D attenuation voxel grids, which reflect attenuation properties from both spatial and temporal dimensions. It is optimized by minimizing discrepancies between the rendered images and sparse 2D DSA images. Without any neural network involved, TiAVox enjoys specific physical interpretability. The parameters of each learnable voxel represent the attenuation coefficients. We validated the TiAVox approach on both clinical and simulated datasets, achieving a 31.23 Peak Signal-to-Noise Ratio (PSNR) for novel view synthesis using only 30 views on the clinically sourced dataset, whereas traditional Feldkamp-Davis-Kress methods required 133 views. Similarly, with merely 10 views from the synthetic dataset, TiAVox yielded a PSNR of 34.32 for novel view synthesis and 41.40 for 3D reconstruction. We also executed ablation studies to corroborate the essential components of TiAVox. The code will be publically available.Comment: 10 pages, 8 figure

    Data-Driven Distributed Optical Vibration Sensors: A Review

    Get PDF
    Distributed optical vibration sensors (DOVS) have attracted much attention recently since it can be used to monitor mechanical vibrations or acoustic waves with long reach and high sensitivity. Phase-sensitive optical time domain reflectometry (Φ-OTDR) is one of the most commonly used DOVS schemes. For Φ-OTDR, the whole length of fiber under test (FUT) works as the sensing instrument and continuously generates sensing data during measurement. Researchers have made great efforts to try to extract external intrusions from the redundant data. High signal-to-noise ratio (SNR) is necessary in order to accurately locate and identify external intrusions in Φ-OTDR systems. Improvement in SNR is normally limited by the properties of light source, photodetector and FUT. But this limitation can also be overcome by post-processing of the received optical signals. In this context, detailed methodologies of SNR enhancement post-processing algorithms in Φ-OTDR systems have been described in this paper. Furthermore, after successfully locating the external vibrations, it is also important to identify the types of source of the vibrations. Pattern classification is a powerful tool in recognizing the intrusion types from the vibration signals in practical applications. Recent reports of Φ-OTDR systems employed with pattern classification algorithms are subsequently reviewed and discussed. This thorough review will provide a design pathway for improving the performance of Φ-OTDR while maintaining the cost of the system as no additional hardware is required

    Converse: A Tree-Based Modular Task-Oriented Dialogue System

    Full text link
    Creating a system that can have meaningful conversations with humans to help accomplish tasks is one of the ultimate goals of Artificial Intelligence (AI). It has defined the meaning of AI since the beginning. A lot has been accomplished in this area recently, with voice assistant products entering our daily lives and chat bot systems becoming commonplace in customer service. At first glance there seems to be no shortage of options for dialogue systems. However, the frequently deployed dialogue systems today seem to all struggle with a critical weakness - they are hard to build and harder to maintain. At the core of the struggle is the need to script every single turn of interactions between the bot and the human user. This makes the dialogue systems more difficult to maintain as the tasks become more complex and more tasks are added to the system. In this paper, we propose Converse, a flexible tree-based modular task-oriented dialogue system. Converse uses an and-or tree structure to represent tasks and offers powerful multi-task dialogue management. Converse supports task dependency and task switching, which are unique features compared to other open-source dialogue frameworks. At the same time, Converse aims to make the bot building process easy and simple, for both professional and non-professional software developers. The code is available at https://github.com/salesforce/Converse

    Is the Core-cusp Problem a Matter of Perspective? Jeans Anisotropic Modeling against Numerical Simulations

    Get PDF
    Mock member stars for 28 dwarf galaxies are constructed from the cosmological auriga simulation, which reflects the dynamical status of realistic stellar tracers. Axisymmetric Jeans Anisotropic Multi-Gaussian Expansion (jam) modeling is applied to 6000 star particles for each system to recover the underlying matter distribution. The stellar or dark matter component individually is poorly recovered, but the total profile is constrained more reasonably. The mass within the half-mass radius of tracers is recovered the tightest, and the mass between 200 and 300 pc, M(200–300 pc), is an unbiasedly constrained ensemble, with a scatter of 0.167 dex. If using 2000 particles and only line-of-sight velocities with typical errors, the scatter in M(200–300 pc) is increased by ∼50%. Quiescent Saggitarius dSph–like systems and star-forming systems with strong outflows show distinct features, with M(200–300 pc) mostly underestimated for the former, and likely overestimated for the latter. The biases correlate with the dynamical status, which is a result of contraction motions due to tidal effects in quiescent systems or galactic winds in star-forming systems, driving them out of equilibrium. After including Gaia DR3 proper motion errors, we find proper motions can be as useful as line-of-sight velocities for nearby systems at < ∼60 kpc. By extrapolating the actual density profiles and the dynamical constraints down to scales below the resolution, we find the mass within 150 pc can be an unbiasedly constrained ensemble, with a scatter of ∼0.255 dex. We show that the contraction of member stars in nearby systems is detectable based on Gaia DR3 proper motion errors

    5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation

    Get PDF
    While it is well established that treatment of cancer patients with 5-Fluorouracil (5-FU) can result in immune suppression, the exact function of 5-FU in the modulation of immune cells has not been fully established. We found that low dose 5-FU selectively suppresses TH17 and TH1 cell differentiation without apparent effect on Treg, TH2, and significantly suppresses thymidylate synthase (TS) expression in TH17 and TH1 cells but has a lesser effect in tumor cells and macrophages. Interestingly, the basal expression of TS varies significantly between T helper phenotypes and knockdown of TS significantly impairs TH17 and TH1 cell differentiation without affecting the differentiation of either Treg or TH2 cells. Finally, low dose 5-FU is effective in ameliorating colitis development by suppressing TH17 and TH1 cell development in a T cell transfer colitis model. Taken together, the results highlight the importance of the anti-inflammatory functions of low dose 5-FU by selectively suppressing TH17 and TH1 immune responses

    Differential expression of cyclins CCNB1 and CCNG1 is involved in the chondrocyte damage of kashin-beck disease

    Get PDF
    The purpose of this study was clarify the relationship between the differential expression of cyclins CCNB1 and CCNG1 and chondrocyte damage in Kashin-Beck disease. Systematic review and high-throughput sequencing of chondrocytes derived from Kashin-Beck disease patients were combined to identify the differentially expressed cyclins and cyclin-dependent kinase genes. In parallel, weaned SD rats were treated with low selenium for 4 weeks and then T-2 toxin for 4 weeks. Knee cartilage was collected to harvest chondrocytes for gene expression profiling. Finally, the protein expression levels of CCNB1 and CCNG1 were verified in knee cartilage tissue of Kashin-Beck disease patients and normal controls by immunohistochemical staining. The systematic review found 52 cartilage disease-related cyclins and cyclin-dependent kinase genes, 23 of which were coexpressed in Kashin-Beck disease, including 15 upregulated and 8 downregulated genes. Under the intervention of a low selenium diet and T-2 toxin exposure, CCNB1 (FC = 0.36) and CCNG1 (FC = 0.73) showed a downward expression trend in rat articular cartilage. Furthermore, compared to normal controls, CCNB1 protein in Kashin-Beck disease articular cartilage was 71.98% and 66.27% downregulated in the superficial and middle zones, respectively, and 12.06% upregulated in the deep zone. CCNG1 protein was 45.66% downregulated in the superficial zone and 12.19% and 9.13% upregulated in the middle and deep zones, respectively. The differential expression of cyclins CCNB1 and CCNG1 may be related to articular cartilage damage in Kashin-Beck disease
    • …
    corecore