47 research outputs found

    Nuclear Outsourcing of RNA Interference Components to Human Mitochondria

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that associate with Argonaute proteins to regulate gene expression at the post-transcriptional level in the cytoplasm. However, recent studies have reported that some miRNAs localize to and function in other cellular compartments. Mitochondria harbour their own genetic system that may be a potential site for miRNA mediated post-transcriptional regulation. We aimed at investigating whether nuclear-encoded miRNAs can localize to and function in human mitochondria. To enable identification of mitochondrial-enriched miRNAs, we profiled the mitochondrial and cytosolic RNA fractions from the same HeLa cells by miRNA microarray analysis. Mitochondria were purified using a combination of cell fractionation and immunoisolation, and assessed for the lack of protein and RNA contaminants. We found 57 miRNAs differentially expressed in HeLa mitochondria and cytosol. Of these 57, a signature of 13 nuclear-encoded miRNAs was reproducibly enriched in mitochondrial RNA and validated by RT-PCR for hsa-miR-494, hsa-miR-1275 and hsa-miR-1974. The significance of their mitochondrial localization was investigated by characterizing their genomic context, cross-species conservation and instrinsic features such as their size and thermodynamic parameters. Interestingly, the specificities of mitochondrial versus cytosolic miRNAs were underlined by significantly different structural and thermodynamic parameters. Computational targeting analysis of most mitochondrial miRNAs revealed not only nuclear but also mitochondrial-encoded targets. The functional relevance of miRNAs in mitochondria was supported by the finding of Argonaute 2 localization to mitochondria revealed by immunoblotting and confocal microscopy, and further validated by the co-immunoprecipitation of the mitochondrial transcript COX3. This study provides the first comprehensive view of the localization of RNA interference components to the mitochondria. Our data outline the molecular bases for a novel layer of crosstalk between nucleus and mitochondria through a specific subset of human miRNAs that we termed ‘mitomiRs’

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Safety and side effect profile of Pfizer-BioNTech COVID-19 vaccination among healthcare workers: A tertiary hospital experience in Singapore

    No full text
    10.47102/annals-acadmedsg.2021160Annals of the Academy of Medicine, Singapore509703-71

    Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66 155 cases and 91 307 controls

    No full text
    BACKGROUND: Variants of certain haemostatic genes (such as that encoding factor V Leiden) are involved in the development of venous thrombosis, but studies of such variants in coronary disease have reported apparently conflicting results. We did meta-analyses on seven such haemostatic genetic variants for which the available evidence on each comprises at least 5000 coronary disease cases and at least 5000 controls. METHODS: Meta-analyses were done of 191 studies in relation to factor V G1691A (ie, factor V Leiden), factor VII G10976A, prothrombin G20210A, plasminogen activator inhibitor-1 (PAI-1) [-675] 4G/5G, and three platelet glycoprotein (GP) receptor variants (GPIa C807T, GPIbalpha T[-5]C, GPIIIa C1565T), involving a total of 66 155 coronary disease cases and 91 307 controls. We explored potential sources of heterogeneity. FINDINGS: In a combined analysis of all studies, the per-allele relative risks (RR) for coronary disease of factor V 1691A and of prothrombin 20210A were 1.17 (95% CI 1.08-1.28) and 1.31 (1.12-1.52), respectively. Combined analyses of studies of the PAI-1 [-675] 4G variant yielded a per-allele relative risk for coronary disease of 1.06 (1.02-1.10), but there was an indication of publication bias in these studies. Combined analyses of the factor VII 10976A, GPIa 807T, GPIbalpha [-5]C, and GPIIIa 1565T variants showed no significant overall associations with coronary disease, yielding per-allele RRs of 0.97 (0.91-1.04), 1.02 (0.97-1.08), 1.05 (0.96-1.13), and 1.03 (0.98-1.07), respectively. INTERPRETATION: The 1691A variant of the factor V gene and the 20210A variant of the prothrombin gene, both of which increase circulating thrombin generation, might each be moderately associated with the risk of coronary disease. Further studies are merited to assess these associations in greater detail (including any gene-gene and gene-environment interactions) and to determine any implications with regard to potential therapies designed to reverse patients' prothrombotic phenotype, such as selective plasma factor V or factor Xa inhibition
    corecore