934 research outputs found

    Scaling Of Chiral Lagrangians And Landau Fermi Liquid Theory For Dense Hadronic Matter

    Get PDF
    We discuss the Fermi-liquid properties of hadronic matter derived from a chiral Lagrangian field theory in which Brown-Rho (BR) scaling is incorporated. We identify the BR scaling as a contribution to Landau's Fermi liquid fixed-point quasiparticle parameter from "heavy" isoscalar meson degrees of freedom that are integrated out from a low-energy effective Lagrangian. We show that for the vector (convection) current, the result obtained in the chiral Lagrangian approach agrees precisely with that obtained in the semi-phenomenological Landau-Migdal approach. This precise agreement allows one to determine the Landau parameter that enters in the effective nucleon mass in terms of the constant that characterizes BR scaling. When applied to the weak axial current, however, these two approaches differ in a subtle way. While the difference is small numerically, the chiral Lagrangian approach implements current algebra and low-energy theorems associated with the axial response that the Landau method misses and hence is expected to be more predictive.Comment: 39 pages, latex with 4 eps figure, modified addresses and reference

    Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia

    Get PDF
    Seven strains, ICMP 19430T, ICMP 19429, ICMP 19431, WSM4637, WSM4638, WSM4639 and WSM4640, were isolated from nitrogen-fixing nodules on roots of the invasive South African legume Dipogon lignosus (subfamily Papilionoideae, tribe Phaseoleae) in New Zealand and Western Australia, and their taxonomic positions were investigated by using a polyphasic approach. All seven strains grew at 10–37 °C (optimum, 25–30 °C), at pH 4.0–9.0 (optimum, pH 6.0–7.0) and with 0–2 % (w/v) NaCl (optimum growth in the absence of NaCl). On the basis of 16S rRNA gene sequence analysis, the strains showed 99.0–99.5 % sequence similarity to the closest type strain, Burkholderia phytofirmans PsJNT, and 98.4–99.7 % sequence similarity to Burkholderia caledonica LMG 19076T. The predominant fatty acids were C18 : 1ω7c (21.0 % of the total fatty acids in strain ICMP 19430T), C16 : 0 (19.1 %), C17 : 0 cyclo (18.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.7 %) and C19 : 0 cyclo ω8c (7.5 %). The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was Q-8 and the DNA G+C content of strain ICMP 19430T was 63.2 mol%. The DNA–DNA relatedness of the novel strains with respect to the closest neighbouring members of the genus Burkholderia was 55 % or less. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data, these strains represent a novel symbiotic species in the genus Burkholderia, for which the name Burkholderia dipogonis sp. Nov. is proposed, with the type strain ICMP 19430T (=LMG 2841T =HAMBI 3637T)

    An example of localized D-branes solution on PP-wave backgrounds

    Get PDF
    In this note we provide an explicit example of type IIB supersymmetric D3-branes solution on a pp-wave like background, consisting in the product of an eight-dimensional pp-wave times a two-dimensional flat space. An interesting property of our solution is the fully localization of the D3-branes (i.e. the solution depends on all the transverse coordinates). Then we show the generalization to other Dp-branes and to the D1/D5 system.Comment: 14 pages, 1 table; v2. references adde

    IMRT beam angle optimization using electromagnetism-like algorithm

    Get PDF
    The selection of appropriate beam irradiation directions in radiotherapy – beam angle optimization (BAO) problem – is very impor- tant for the quality of the treatment, both for improving tumor irradia- tion and for better organs sparing. However, the BAO problem is still not solved satisfactorily and, most of the time, beam directions continue to be manually selected in clinical practice which requires many trial and error iterations between selecting beam angles and computing ïŹ‚uence patterns until a suitable treatment is achieved. The objective of this pa- per is to introduce a new approach for the resolution of the BAO problem, using an hybrid electromagnetism-like algorithm with descent search to tackle this highly non-convex optimization problem. Electromagnetism- like algorithms are derivative-free optimization methods with the ability to avoid local entrapment. Moreover, the hybrid electromagnetism-like algorithm with descent search has a high ability of producing descent directions. A set of retrospective treated cases of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra is used to discuss the beneïŹts of the proposed algorithm for the optimization of the BAO problem.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Oscillations of a solid sphere falling through a wormlike micellar fluid

    Full text link
    We present an experimental study of the motion of a solid sphere falling through a wormlike micellar fluid. While smaller or lighter spheres quickly reach a terminal velocity, larger or heavier spheres are found to oscillate in the direction of their falling motion. The onset of this instability correlates with a critical value of the velocity gradient scale Γc∌1\Gamma_{c}\sim 1 s−1^{-1}. We relate this condition to the known complex rheology of wormlike micellar fluids, and suggest that the unsteady motion of the sphere is caused by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure

    Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions

    Full text link
    We consider two-dimensional Fermi liquids in the vicinity of a quantum transition to a phase with commensurate, antiferromagnetic long-range order. Depending upon the Fermi surface topology, mean-field spin-density-wave theory predicts two different types of such transitions, with mean-field dynamic critical exponents z=1z=1 (when the Fermi surface does not cross the magnetic zone boundary, type AA) and z=2z=2 (when the Fermi surface crosses the magnetic zone boundary, type BB). The type AA system only displays z=1z=1 behavior at all energies and its scaling properties are similar (though not identical) to those of an insulating Heisenberg antiferromagnet. Under suitable conditions precisely stated in this paper, the type BB system displays a crossover from relaxational behavior at low energies to type AA behavior at high energies. A scaling hypothesis is proposed to describe this crossover: we postulate a universal scaling function which determines the entire, temperature-, wavevector-, and frequency-dependent, dynamic, staggered spin susceptibility in terms of 4 measurable, T=0T=0, parameters (determining the distance, energy, and order parameter scales, plus one crossover parameter). The scaling function contains the full scaling behavior in all regimes for both type AA and BB systems. The crossover behavior of the uniform susceptibility and the specific heat is somewhat more complicated and is also discussed. Explicit computation of the crossover functions is carried out in a large NN expansion on a mean-field model. Some new results for the critical properties on the ordered side of the transition are also obtained in a spin-density wave formalism. The possible relevance of our results to the doped cuprate compounds is briefly discussed.Comment: 20 pages, REVTeX, 6 figures (uuencoded compressed PostScript file for figures is appended

    Quotients of AdS_{p+1} x S^q: causally well-behaved spaces and black holes

    Full text link
    Starting from the recent classification of quotients of Freund--Rubin backgrounds in string theory of the type AdS_{p+1} x S^q by one-parameter subgroups of isometries, we investigate the physical interpretation of the associated quotients by discrete cyclic subgroups. We establish which quotients have well-behaved causal structures, and of those containing closed timelike curves, which have interpretations as black holes. We explain the relation to previous investigations of quotients of asymptotically flat spacetimes and plane waves, of black holes in AdS and of Godel-type universes.Comment: 48 pages; v2: minor typos correcte

    Impact of metabolic stress induced by diets, aging and fasting on tissue oxygen consumption

    Get PDF
    OBJECTIVE: Alterations in mitochondrial function play an important role in the development of various diseases, such as obesity, insulin resistance, steatohepatitis, atherosclerosis and cancer. However, accurate assessment of mitochondrial respiration ex vivo is limited and remains highly challenging. Using our novel method, we measured mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of metabolically relevant tissues ex vivo to investigate the impact of different metabolic stressors on mitochondrial function. METHODS: Comparative analysis of OCR and ECAR in young mice fed either 12 weeks high-fat (HFD), high-sucrose (HSD), or western diet (WD), a HFD in matured mice, 2 years prolonged aging on standard-control diet (STD), as well as fasting in tissue biopsies. RESULTS: While diets had only marginal effects on mitochondrial respiration, respiratory chain complexes II and IV were reduced. Moreover, matured HFD-fed mice showed a decreased hepatic metabolic flexibility and prolonged aging increased OCR in brown adipose tissue. Interestingly, fasting boosted pancreatic and hepatic OCR while decreasing weight of those organs. Furthermore, ECAR measurements in adipose tissue could indicate its lipolytic capacity. CONCLUSION: Using ex vivo tissue measurements, we could extensively analyze mitochondrial function of liver, adipose tissue, pancreas and heart revealing effects of metabolic stress, especially aging

    Long-Baseline Study of the Leading Neutrino Oscillation at a Neutrino Factory

    Get PDF
    Within the framework of three-flavor neutrino oscillations, we consider the physics potential of \nu_e --> \nu_\mu appearance and \nu_\mu --> \nu_\mu survival measurements at a neutrino factory for a leading oscillation scale \delta m^2 ~ 3.5 \times 10^{-3} eV^2. Event rates are evaluated versus baseline and stored muon energy, and optimal values discussed. Over a sizeable region of oscillation parameter space, matter effects would enable the sign of \delta m^2 to be determined from a comparison of \nu_e --> \nu_\mu with \bar\nu_e --> \bar\nu_\mu event rates and energy distributions. It is important, therefore, that both positive and negative muons can be stored in the ring. Measurements of the \nu_\mu --> \nu_\mu survival spectrum could determine the magnitude of \delta m^2 and the leading oscillation amplitude with a precision of O(1%--2%).Comment: 33 pages, single-spaced Revtex, uses epsf.sty, 14 postscript figures. Added references, expanded conclusions, improved figs. 13 and 14. Version to be published in Phys. Rev.
    • 

    corecore