2,714 research outputs found

    Antiflow of kaons in relativistic heavy ion collisions

    Get PDF
    We compare relativistic transport model calculations to recent data on the sideward flow of neutral strange K^0_s mesons for Au+Au collisions at 6 AGeV. A soft nuclear equation of state is found to describe very well the positive proton flow data measured in the same experiment. In the absence of kaon potential, the K^0 flow pattern is similar to that of protons. The kaon flow becomes negative if a repulsive kaon potential determined from the impulse approximation is introduced. However, this potential underestimates the data which exhibits larger antiflow. An excellent agreement with the data is obtained when a relativistic scalar-vector kaon potential, that has stronger density dependence, is used. We further find that the transverse momentum dependence of directed and elliptic flow is quite sensitive to the kaon potential in dense matter.Comment: 5 pages, Revtex, 4 figure

    A sticky business: the status of the conjectured viscosity/entropy density bound

    Full text link
    There have been a number of forms of a conjecture that there is a universal lower bound on the ratio, eta/s, of the shear viscosity, eta, to entropy density, s, with several different domains of validity. We examine the various forms of the conjecture. We argue that a number of variants of the conjecture are not viable due to the existence of theoretically consistent counterexamples. We also note that much of the evidence in favor of a bound does not apply to the variants which have not yet been ruled out.Comment: 23 pages, 4 figures, added references, corrected typos, added subsection in response to Son's comments in arXiv:0709.465

    The integrable hierarchy constructed from a pair of KdV-type hierarchies and its associated WW algebra

    Full text link
    For any two arbitrary positive integers `nn' and `mm', using the mm--th KdV hierarchy and the (n+m)(n+m)--th KdV hierarchy as building blocks, we are able to construct another integrable hierarchy (referred to as the (n,m)(n,m)--th KdV hierarchy). The WW--algebra associated to the \shs\, of the (n,m)(n,m)--th KdV hierarchy (called W(n,m)W(n,m) algebra) is isomorphic via a Miura map to the direct sum of WmW_m--algebra, Wn+mW_{n+m}--algebra and an additional U(1)U(1) current algebra. In turn, from the latter, we can always construct a representation of WW_\infty--algebra.Comment: 26p, latex, BONN--TH-94-17, SISSA-ISAS-118/94/EP, AS-ITP-94-43, revised version with addition

    Supersymmetry Changing Bubbles in String Theory

    Get PDF
    We give examples of string compactifications to 4d Minkowski space with different amounts of supersymmetry that can be connected by spherical domain walls. The tension of these domain walls is tunably lower than the 4d Planck scale. The ``stringy'' description of these walls is known in terms of certain configurations of wrapped Dirichlet and NS branes. This construction allows us to connect a variety of vacua with 4d N=4,3,2,1 supersymmetry.Comment: 11 pages, harvmac, no figures, reference added, minor correction

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    A high-quality video denoising algorithm based on reliable motion estimation

    Get PDF
    11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IIIAlthough the recent advances in the sparse representations of images have achieved outstanding denosing results, removing real, structured noise in digital videos remains a challenging problem. We show the utility of reliable motion estimation to establish temporal correspondence across frames in order to achieve high-quality video denoising. In this paper, we propose an adaptive video denosing framework that integrates robust optical flow into a non-local means (NLM) framework with noise level estimation. The spatial regularization in optical flow is the key to ensure temporal coherence in removing structured noise. Furthermore, we introduce approximate K-nearest neighbor matching to significantly reduce the complexity of classical NLM methods. Experimental results show that our system is comparable with the state of the art in removing AWGN, and significantly outperforms the state of the art in removing real, structured noise

    Effects of momentum conservation on the analysis of anisotropic flow

    Full text link
    We present a general method for taking into account correlations due to momentum conservation in the analysis of anisotropic flow, either by using the two-particle correlation method or the standard flow vector method. In the latter, the correlation between the particle and the flow vector is either corrected through a redefinition (shift) of the flow vector, or subtracted explicitly from the observed flow coefficient. In addition, momentum conservation contributes to the reaction plane resolution. Momentum conservation mostly affects the first harmonic in azimuthal distributions, i.e., directed flow. It also modifies higher harmonics, for instance elliptic flow, when they are measured with respect to a first harmonic event plane such as one determined with the standard transverse momentum method. Our method is illustrated by application to NA49 data on pion directed flow.Comment: RevTeX 4, 10 pages, 1 eps figure. Version accepted for publication in Phys Rev

    Development of an eight-band theory for quantum-dot heterostructures

    Get PDF
    We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot heterostructures (QDHs) in Burt's envelope-function representation. The 8x8 radial Hamiltonian and the boundary conditions for the Schroedinger equation are obtained for spherical QDHs. Boundary conditions for symmetrized and nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are commonly used to match the wave functions found from the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are calculated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions of an electron and a hole and, consequently, the energies of both intraband and interband transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected], [email protected]

    Nucleon Axial Form Factor from Lattice QCD

    Full text link
    Results for the isovector axial form factors of the proton from a lattice QCD calculation are presented for both point-split and local currents. They are obtained on a quenched 163×2416^{3} \times 24 lattice at β=6.0\beta= 6.0 with Wilson fermions for a range of quark masses from strange to charm. We determine the finite lattice renormalization for both the local and point-split currents of heavy quarks. Results extrapolated to the chiral limit show that the q2q^2 dependence of the axial form factor agrees reasonably well with experiment. The axial coupling constant gAg_A calculated for the local and the point-split currents is about 6\% and 12\% smaller than the experimental value respectively.Comment: 8 pages, 5 figures (included in part 2), UK/93-0
    corecore