8 research outputs found
Axisymmetric contact problem for a flattened cell : contributions of substrate effect and cell thickness to the determination of viscoelastic properties by using AFM indentation
Nanoindentation technology has proven an effective method to investigate the viscoelastic properties of biological cells. The experimental data obtained by nanoindentation are frequently interpreted by Hertz contact model. However, in order to facilitate the application of Hertz contact model, a mass of studies assume cells have infinite thickness which does not necessarily represent the real situation. In this study, a rigorous contact model based upon linear elasticity is developed for the interpretation of indentation tests of flattened cells which represent a factual morphology. The cell, normally bonded to the petri dish, is initially treated as an elastic layer of finite thickness perfectly fixed to a rigid substrate, and the conic indenter is assumed to be frictionless. The theory of linear elasticity is utilized to solve this contact issue and then the solutions are extended to viscoelastic situation which is regarded as a good indicator for mechanical properties of biological cells. To test the present model, an AFM-based creep test has been conducted on living human hepatocellular carcinoma cell (SMMC-7721 cell) and its fullerenol-treated counterpart. The results indicate that the present model could not only describe very well the creep behavior of SMMC-7721 cells, but can also curb overestimation of the mechanical properties due to substrate effect. Moreover, the present model could identify the difference between the control and treated SMMC-7721 cells in terms of the extracted viscoelastic parameters, suggesting its potential in revealing the biomechanical effects of fullerenol-like drug treatment on cancerous cells
STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters
Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients. SARS-CoV-2 infection can result in severe lung inflammation and pathology, but host response remains incompletely understood. Here the authors show in Syrian hamsters that STAT2 signaling restricts systemic virus dissemination but also drives severe lung injury, playing a dual role in SARS-CoV-2 infection
Analysis of colchicine-induced effects on hepatoma and hepatpcyte cells by atomic force microscopy
Biomechanical properties of cells are altered by many diseases. Cancer cell metastasis is related to the properties such as the cell stiffness that influences cell proliferation, differentiation and migration. In this paper, we used an atomic force microscope to analyze the colchicine-induced effects on the mechanical properties of hepatocyte (HL-7702 cells) and hepatoma cells (SMCC-7721 cells) in culture at the nanoscale. The cells were exposed to a solution with a normal dose of colchicine for two, four and six hours. Surface topographic images showed that colchicine decreased the stability of the cytoskeleton. After the same six-hour treatment in a solution with a normal dose of colchicine, the biomechanical properties of HL-7702 cells were almost unchanged. However, the stiffness and the adhesion force of the SMCC-7721 cells were clearly increased (more than twofold of the normal values), especially after four hours. The deformability of SMCC-7721 cancer cells was significantly decreased within the six-hour treatment in the solution with a normal dose of colchicine. Analysis of the biomechanical properties of post-treatment hepatoma cells provided a complementary explanation for the mechanism of action of colchicine on cells at the nanoscale. This method is expected to allow the monitoring of potential metastatic cancer cell changes, thus preventing the emergence and the transmission of disease, and improving the diagnosis of cancer
5α-Hydroxycostic acid inhibits choroidal neovascularization in rats through a dual signalling pathway mediated by VEGF and angiopoietin 2
Abstract Background 5α-Hydroxycostic acid is a eudemane sesquiterpene that is isolated from the natural plant, Laggera alata. It exerts anti-inflammatory and anti-angiogenic effects on human breast cancer cells, but its role and underlying mechanism in choroidal neovascularization (CNV) are still unclear. We conducted a study to verify that 5α-Hydroxycostic acid can inhibit the formation and leakage of CNV, and describe the possible dual pathway by which it exerts its inhibitory effects in this process. Methods An in vitro model of choroidal neovascularization was established using VEGF164, while a rat model of choroidal neovascularization was established using a 532 nm laser. In both models, the effects of 5α-Hydroxycostic acid in vivo and in vitro were evaluated to determine its inhibitory effect on abnormal cell proliferation, migration and tubule formation, as well as its effect on pathological changes in choroidal tissues and the area of neovascularization leakage in rats. The levels of components in the VEGF/VEGFR and Ang2/Tie2 signaling pathways were measured in tissues and cells. Results In vitro experiments have shown that 5α-Hydroxycostic acid can inhibit abnormal cell proliferation, migration and angiogenesis. Additionally, 5α-Hydroxycostic acid enhances cell adhesion by inhibiting the phosphorylation pathways of VEGFR2 and Tie2. In vivo experiments demonstrated that 5α-Hydroxycostic acid has a positive therapeutic effect on choroidal neovascularization in rats. It can effectively reduce vascular leakage, consistent with the results of the cell experiments. Conclusion 5α-Hydroxycostic acid can inhibit choroidal neovascularization by interfering with the VEGF- and Ang2/Tie2-related pathways, and it may be a good candidate drug for treating CNV
Biomechanical measurement and analysis of colchicine-induced effects on cells by nanoindentation using an atomic force microscope
Colchicine is a drug commonly used for the treatment of gout, however, patients may sometimes encounter side-effects induced by taking colchicine, such as nausea, vomiting, diarrhea and kidney failure. In this regard, it is imperative to investigate the mechanism effects of colchicine on biological cells. In this paper, we present a method for the detection of mechanical properties of nephrocytes (VERO cells), hepatocytes (HL-7702 cells) and hepatoma cells (SMCC-7721 cells) in culture by atomic force microscope(AFM) to analyze the 0.1 μg/mL colchicine-induced effects on the nanoscalefor two, four and six hours. Compared to the corresponding control cells, the biomechanical properties of the VERO and SMCC-7721 cells changed significantly and the HL-7702 cells did not considerably change after the treatment when considering the same time period. Based on biomechanical property analyses, the colchicine solution made the VERO and SMCC-7721 cells harder. We conclude that it is possible to reduce the division rate of the VERO cells and inhibit the metastasis of the SMCC-7721 cells. The method described here can be applied to study biomechanics of many other types of cells with different drugs. Therefore, this work provides an accurate and rapid method for drug screening and mechanical analysis of cells in medical research
Effect of daidzein on fermentation parameters and bacterial community of finishing Xianan cattle
An experiment was conducted to determine the effects of adding different amounts of daidzein in diet on the fermentation parameters and bacterial community composition in the rumen of finishing cattle. A total of thirty head of 2-year-old finishing Xianan cattle were divided by weight into three groups and randomly allotted by group to one of three dietary treatments: (1) control; (2) 500 mg/kg daidzein and (3) 1000 mg/kg daidzein. All cattle were slaughtered to obtain rumen samples after a 80-d feeding trial. Results showed that adding 500 mg/kg daidzein reduced the operational taxonomic units (OTU) numbers, Shannon index and Chao1 index compared with control and 1000 mg/kg daidzein groups. Compared with control group at phylum level, Planctomycetos and Tenericutes were significantly more abundant in 500 mg/kg daidzein group, Verrucomicrobia and Fusobacteria were significantly rarer in 1000 mg/kg daidzein group. Compared with control group at genus level, Prevotella and Ruminococcus were significantly more abundant in 500 mg/kg daidzein group, Prevotella was significantly more abundant and Dethiosulfatibacter was significantly rarer in 1000 mg/kg daidzein group. Adding 1000 mg/kg daidzein significantly improved the total volatile fatty acids (TVFA) concentration and acetate content and significantly reduced the butyrate content compared with control group. Daidzein changed the fermentation parameters mainly by impacting the abundance of Prevotella and Ruminococcus. Current results suggest that adding 1000 mg/kg daidzein in diets can improve the rumen fermentation function for finishing Xianan cattle
STAT2 signaling as double-edged sword restricting viral dissemination but driving severe pneumonia in SARS-CoV-2 infected hamsters
Introductory paragraph Since the emergence of SARS-CoV-2 causing COVID-19, the world is being shaken to its core with numerous hospitalizations and hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that productive SARS-CoV-2 infection in the lungs of mice is limited and restricted by early type I interferon responses. In contrast, we show that Syrian hamsters are highly permissive to SARS- CoV-2 and develop bronchopneumonia and a strong inflammatory response in the lungs with neutrophil infiltration and edema. Moreover, we identify an exuberant innate immune response as a key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Finally, we assess SARS-CoV- 2-induced lung pathology in hamsters by micro-CT alike used in clinical practice. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.status: publishe