311 research outputs found
A note on “Jacobi elliptic function solutions for the modified Korteweg–de Vries equation”
AbstractThe recently published paper “Jacobi elliptic function solutions for the modified Korteweg–de Vries equation” [J. King Saud Univ. Sci. 25 (2013) 271–274] is analyzed. We show that these Jacobi elliptic function solutions obtained by the authors do not satisfy the original modified Korteweg–de Vries equation
Median evidential c-means algorithm and its application to community detection
Median clustering is of great value for partitioning relational data. In this
paper, a new prototype-based clustering method, called Median Evidential
C-Means (MECM), which is an extension of median c-means and median fuzzy
c-means on the theoretical framework of belief functions is proposed. The
median variant relaxes the restriction of a metric space embedding for the
objects but constrains the prototypes to be in the original data set. Due to
these properties, MECM could be applied to graph clustering problems. A
community detection scheme for social networks based on MECM is investigated
and the obtained credal partitions of graphs, which are more refined than crisp
and fuzzy ones, enable us to have a better understanding of the graph
structures. An initial prototype-selection scheme based on evidential
semi-centrality is presented to avoid local premature convergence and an
evidential modularity function is defined to choose the optimal number of
communities. Finally, experiments in synthetic and real data sets illustrate
the performance of MECM and show its difference to other methods
Evidential Label Propagation Algorithm for Graphs
Community detection has attracted considerable attention crossing many areas
as it can be used for discovering the structure and features of complex
networks. With the increasing size of social networks in real world, community
detection approaches should be fast and accurate. The Label Propagation
Algorithm (LPA) is known to be one of the near-linear solutions and benefits of
easy implementation, thus it forms a good basis for efficient community
detection methods. In this paper, we extend the update rule and propagation
criterion of LPA in the framework of belief functions. A new community
detection approach, called Evidential Label Propagation (ELP), is proposed as
an enhanced version of conventional LPA. The node influence is first defined to
guide the propagation process. The plausibility is used to determine the domain
label of each node. The update order of nodes is discussed to improve the
robustness of the method. ELP algorithm will converge after the domain labels
of all the nodes become unchanged. The mass assignments are calculated finally
as memberships of nodes. The overlapping nodes and outliers can be detected
simultaneously through the proposed method. The experimental results
demonstrate the effectiveness of ELP.Comment: 19th International Conference on Information Fusion, Jul 2016,
Heidelber, Franc
Adaptive imputation of missing values for incomplete pattern classification
In classification of incomplete pattern, the missing values can either play a
crucial role in the class determination, or have only little influence (or
eventually none) on the classification results according to the context. We
propose a credal classification method for incomplete pattern with adaptive
imputation of missing values based on belief function theory. At first, we try
to classify the object (incomplete pattern) based only on the available
attribute values. As underlying principle, we assume that the missing
information is not crucial for the classification if a specific class for the
object can be found using only the available information. In this case, the
object is committed to this particular class. However, if the object cannot be
classified without ambiguity, it means that the missing values play a main role
for achieving an accurate classification. In this case, the missing values will
be imputed based on the K-nearest neighbor (K-NN) and self-organizing map (SOM)
techniques, and the edited pattern with the imputation is then classified. The
(original or edited) pattern is respectively classified according to each
training class, and the classification results represented by basic belief
assignments are fused with proper combination rules for making the credal
classification. The object is allowed to belong with different masses of belief
to the specific classes and meta-classes (which are particular disjunctions of
several single classes). The credal classification captures well the
uncertainty and imprecision of classification, and reduces effectively the rate
of misclassifications thanks to the introduction of meta-classes. The
effectiveness of the proposed method with respect to other classical methods is
demonstrated based on several experiments using artificial and real data sets
Evidential relational clustering using medoids
In real clustering applications, proximity data, in which only pairwise
similarities or dissimilarities are known, is more general than object data, in
which each pattern is described explicitly by a list of attributes.
Medoid-based clustering algorithms, which assume the prototypes of classes are
objects, are of great value for partitioning relational data sets. In this
paper a new prototype-based clustering method, named Evidential C-Medoids
(ECMdd), which is an extension of Fuzzy C-Medoids (FCMdd) on the theoretical
framework of belief functions is proposed. In ECMdd, medoids are utilized as
the prototypes to represent the detected classes, including specific classes
and imprecise classes. Specific classes are for the data which are distinctly
far from the prototypes of other classes, while imprecise classes accept the
objects that may be close to the prototypes of more than one class. This soft
decision mechanism could make the clustering results more cautious and reduce
the misclassification rates. Experiments in synthetic and real data sets are
used to illustrate the performance of ECMdd. The results show that ECMdd could
capture well the uncertainty in the internal data structure. Moreover, it is
more robust to the initializations compared with FCMdd.Comment: in The 18th International Conference on Information Fusion, July
2015, Washington, DC, USA , Jul 2015, Washington, United State
- …