1,091 research outputs found

    Holographic recording of fast phenomena

    Get PDF
    We report on a holographic method for recording fast events whose speed is limited by the laser pulse duration if the recording material has sufficient sensitivity to reliably record a frame of the fast event with a single pulse. The method we describe uses the angular selectivity of thick holograms to resolve frames that are recorded with adjacent pulses. Two specially designed cavities are used to generate the signal and reference pulse trains. We experimentally demonstrate the system by recording laser induced shock waves with a temporal resolution of 5.9 ns, limited by the pulse width of the Q-switched Nd:yttrium–aluminum–garnet laser used in the experiments

    Facial Action Unit Detection Using Attention and Relation Learning

    Full text link
    Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the existing attention based AU detection works use prior knowledge to predefine fixed attentions or refine the predefined attentions within a small range, which limits their capacity to model various AUs. In this paper, we propose an end-to-end deep learning based attention and relation learning framework for AU detection with only AU labels, which has not been explored before. In particular, multi-scale features shared by each AU are learned firstly, and then both channel-wise and spatial attentions are adaptively learned to select and extract AU-related local features. Moreover, pixel-level relations for AUs are further captured to refine spatial attentions so as to extract more relevant local features. Without changing the network architecture, our framework can be easily extended for AU intensity estimation. Extensive experiments show that our framework (i) soundly outperforms the state-of-the-art methods for both AU detection and AU intensity estimation on the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can adaptively capture the correlated regions of each AU, and (iii) also works well under severe occlusions and large poses.Comment: This paper is accepted by IEEE Transactions on Affective Computin

    Holographic recording of fast events on a CCD camera

    Get PDF
    We report on holographic recording of nanosecond events on a conventional CCD camera. Three frames of an air-discharge event, with resolution of 5.9 ns and frame interval of 12 ns, are recorded in a single CCD frame. Each individual frame is reconstructed by digital filtering of the CCD frame, since successively recorded holograms are centered at different carrier frequencies in the spatial frequency domain

    Holographic recording of laser-induced plasma

    Get PDF
    We report on a holographic probing technique that allows for measurement of free-electron distribution with fine spatial detail. Plasma is generated by focusing a femtosecond pulse in air. We also demonstrate the capability of the holographic technique of capturing the time evolution of the plasma-generation process
    • …
    corecore