29 research outputs found

    In Situ Engineering and Characterization of Correlated Materials with Integrated OMBE–ARPES

    Get PDF
    Oxide molecular beam epitaxy has emerged as an effective technique to fabricate complex oxide thin films and novel superlattices with atomic‐level precision. In this chapter, we first briefly introduce the oxide molecular beam epitaxy technique and then show how to use this technique to achieve high‐quality thin films with good stoichiometry. Moreover, we exhibit that the combination of oxide molecular beam epitaxy and in situ angle‐resolved photoemission spectroscopy is indeed a versatile toolkit to tailor and characterize properties of novel quantum materials

    Novel joint-drift-free scheme at acceleration level for robotic redundancy resolution with tracking error theoretically eliminated

    Get PDF
    In this article, three acceleration-level joint-drift-free (ALJDF) schemes for kinematic control of redundant manipulators are proposed and analyzed from perspectives of dynamics and kinematics with the corresponding tracking error analyses. First, the existing ALJDF schemes for kinematic control of redundant manipulators are systematized into a generalized acceleration-level joint-drift-free scheme with a paradox pointing out the theoretical existence of the velocity error related to joint drift. Second, to remedy the deficiency of the existing solutions, a novel acceleration-level joint-drift-free (NALJDF) scheme is proposed to decouple Cartesian space error from joint space with the tracking error theoretically eliminated. Third, in consideration of the uncertainty at the dynamics level, a multi-index optimization acceleration-level joint-drift-free scheme is presented to reveal the influence of dynamics factors on the redundant manipulator control. Afterwards, theoretical analyses are provided to prove the stability and feasibility of the corresponding dynamic neural network with the tracking error deduced. Then, computer simulations, performance comparisons, and physical experiments on different redundant manipulators synthesized by the proposed schemes are conducted to demonstrate the high performance and superiority of the NALJDF scheme and the influence of dynamics parameters on robot control. This work is of great significance to enhance the product quality and production efficiency in industrial production

    Kagome surface states and weak electronic correlation in vanadium-kagome metals

    Full text link
    RV6Sn6 (R = Y and lanthanides) with two-dimensional vanadium-kagome surface states is an ideal platform to investigate kagome physics and manipulate the kagome features to realize novel phenomena. Utilizing the micron-scale spatially resolved angle-resolved photoemission spectroscopy and first-principles calculations, we report a systematical study of the electronic structures of RV6Sn6 (R = Gd, Tb, and Lu) on the two cleaved surfaces, i.e., the V- and RSn1-terminated (001) surfaces. The calculated bands without any renormalization match well with the main ARPES dispersive features, indicating the weak electronic correlation in this system. We observe 'W'-like kagome surface states around the Brillouin zone corners showing R-element-dependent intensities, which is probably due to various coupling strengths between V and RSn1 layers. Our finding suggests an avenue for tuning electronic states by interlayer coupling based on two-dimensional kagome lattices

    Electronic Structure of Superconducting Infinite-Layer Lanthanum Nickelates

    Full text link
    Revealing the momentum-resolved electronic structure of infinite-layer nickelates is essential for understanding this new class of unconventional superconductors, but has been hindered by the formidable challenges in improving the sample quality. In this work, we report for the first time the angle-resolved photoemission spectroscopy of superconducting La0.8_{0.8}Sr0.2_{0.2}NiO2_{2} films prepared by molecular beam epitaxy and in situ{\mathrm{\textit{in situ}}} atomic-hydrogen reduction. The measured Fermi topology closely matches theoretical calculations, showing a large Ni-dx2y2d_{x^2-y^2} derived Fermi sheet that evolves from hole-like to electron-like along kzk_{z}, and a three-dimensional (3D) electron pocket centered at Brillouin zone corner. The Ni-dx2y2d_{x^2-y^2} derived bands show a mass enhancement (m/mDFTm^*/m_{\rm{DFT}}) of 2-3,while the 3D electron band shows negligible band renormalization. Moreover, the Ni-dx2y2d_{x^2-y^2} derived states also display a band dispersion anomaly at higher binding energy, reminiscent of the waterfall feature and kinks observed in cuprates.Comment: 29 pages,13 figure

    Observation of electronic nematicity driven by three-dimensional charge density wave in kagome lattice KV3_3Sb5_5

    Full text link
    Kagome superconductors AV3_3Sb5_5 (A = K, Rb, Cs) provide a fertile playground for studying various intriguing phenomena such as non-trivial band topology, superconductivity, giant anomalous Hall effect, and charge density wave (CDW). Remarkably, the recent discovery of C2C_2 symmetric nematic phase prior to the superconducting state in AV3_3Sb5_5 has drawn enormous attention, as the unusual superconductivity might inherit the symmetry of the nematic phase. Although many efforts have been devoted to resolve the charge orders using real-space microscopy and transport measurements, the direct evidence on the rotation symmetry breaking of the electronic structure in the CDW state from the reciprocal space is still rare. The underlying mechanism is still ambiguous. Here, utilizing the micron-scale spatially resolved angle-resolved photoemission spectroscopy, we observed the fingerprint of band folding in the CDW phase of KV3_3Sb5_5, which yet demonstrates the unconventional unidirectionality, and is indicative of the rotation symmetry breaking from C6C_6 to C2C_2. We then pinpointed that the interlayer coupling between adjacent planes with π\pi-phase offset in the 2×\times2×\times2 CDW phase would lead to the preferred twofold symmetric electronic structure. Time-reversal symmetry is further broken at temperatures below \sim 40 K as characterized by giant anomalous Hall effect triggered by weak magnetic fields. These rarely observed unidirectional back-folded bands with time-reversal symmetry breaking in KV3_3Sb5_5 may provide important insights into its peculiar charge order and superconductivity

    Direct observation of topological surface states in the layered kagome lattice with broken time-reversal symmetry

    Full text link
    Magnetic topological quantum materials display a diverse range of fascinating physical properties which arise from their intrinsic magnetism and the breaking of time-reversal symmetry. However, so far, few examples of intrinsic magnetic topological materials have been confirmed experimentally, which significantly hinder our comprehensive understanding of the abundant physical properties in this system. The kagome lattices, which host diversity of electronic structure signatures such as Dirac nodes, flat bands, and saddle points, provide an alternative and promising platform for in-depth investigations into correlations and band topology. In this article, drawing inspiration from the stacking configuration of MnBi2_2Te4_4, we conceive and then synthesize a high-quality single crystal EuTi3_3Bi4_4, which is a unique natural heterostructure consisting of both topological kagome layers and magnetic interlayers. We investigate the electronic structure of EuTi3_3Bi4_4 and uncover distinct features of anisotropic multiple Van Hove singularitie (VHS) that might prevent Fermi surface nesting, leading to the absence of a charge density wave (CDW). In addition, we identify the topological nontrivial surface states that serve as connections between different saddle bands in the vicinity of the Fermi level. Combined with calculations, we establish that, the effective time-reversal symmetry S=θ\thetaτ1/2\tau_{1/2} play a crucial role in the antiferromagnetic ground state of EuTi3_3Bi4_4, which ensures the stability of the topological surface states and gives rise to their intriguing topological nature. Therefore, EuTi3_3Bi4_4 offers the rare opportunity to investigate correlated topological states in magnetic kagome materials.Comment: 9 pages, 4 figure

    Genome-wide identification of the CAD gene family and functional analysis of putative bona fide CAD genes in tobacco (Nicotiana tabacum L.)

    Get PDF
    Cinnamyl alcohol dehydrogenase (CAD) plays a crucial role in lignin biosynthesis, and the gene family encoding various CAD isozymes has been cloned and characterized in numerous plant species. However, limited information regarding the CAD gene family in tobacco is currently available. In this study, we identified 10 CAD genes in Nicotiana tabacum, four in N. tomentosiformis, and six in N. sylvestris. The nucleotide and amino acid sequences of these tobacco CADs demonstrate high levels of similarity, whereas the putative protein sequences conservatively possessed two Zn2+ binding motifs and an NADP(H) cofactor binding motif. Both NtCAD1 and NtCAD2 had conservative substrate binding sites, similar to those possessed by bona fide CADs, and evidence from phylogenetic analysis as well as expression profiling supported their role as bona fide CADs involved in lignin biosynthesis. NtCAD1 has two paralogous genes, NtCAD1–1 and NtCAD1–2. Enzyme activity analysis revealed that NtCAD1–1 and NtCAD1–2 had a high affinity to coniferyl aldehyde, p-coumaryl aldehyde, and sinapyl aldehyde, whereas NtCAD2 preferred coniferyl aldehyde and p-coumaryl aldehyde as substrates. The kinetic parameter assay revealed that NtCAD1–2 functions as the most efficient enzyme. Downregulation of both NtCAD1–1 and NtCAD1–2 resulted in reddish-brown stems without significant changes in lignin content. Furthermore, NtCAD1–1, NtCAD1–2, and NtCAD2 showed distinct expression patterns in response to biotic and abiotic stresses, as well as different phytohormones. Our findings suggest that NtCAD1–1 and NtCAD1–2 are involved in lignin biosynthesis, with NtCAD1–2 also participating in both biological and abiotic stresses, whereas NtCAD2 plays a distinct role mainly in responding to biological and abiotic stresses in tobacco

    Observation of nonrelativistic plaid-like spin splitting in a noncoplanar antiferromagnet

    Full text link
    Spatial, momentum and energy separation of electronic spins in condensed matter systems guides the development of novel devices where spin-polarized current is generated and manipulated. Recent attention on a set of previously overlooked symmetry operations in magnetic materials leads to the emergence of a new type of spin splitting besides the well-studied Zeeman, Rashba and Dresselhaus effects, enabling giant and momentum dependent spin polarization of energy bands on selected antiferromagnets independent of relativistic spin-orbit interaction. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here, we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet MnTe2_2, the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, stems from the intrinsic antiferromagnetic order instead of the relativistic spin-orbit coupling. Our finding demonstrates a new type of spin-momentum locking with a nonrelativistic origin, placing antiferromagnetic spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.Comment: Version 2, 30 pages, 4 main figures and 8 supporting figure
    corecore