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Novel Joint-Drift-Free Scheme at Acceleration
Level for Robotic Redundancy Resolution with

Tracking Error Theoretically Eliminated
Long Jin,Member, IEEE, Zhengtai Xie, Mei Liu, Ke Chen, Chunxu Li and Chenguang Yang

Abstract—In this paper, three acceleration-level joint-drift-
free (ALJDF) schemes for kinematic control of redundant
manipulators are proposed and analyzed from perspectives of
dynamics and kinematics with the corresponding tracking error
analyses. Firstly, the existing ALJDF schemes for kinematic
control of redundant manipulators are systematized into a gener-
alized acceleration-level joint-drift-free (GALJDF) scheme with
a paradox pointing out the theoretical existence of the velocity
error related to joint drift. Secondly, to remedy the deficiency
of the existing solutions, a novel acceleration-level joint-drift-
free (NALJDF) scheme is proposed to decouple Cartesian space
error from joint space with the tracking error theoreticall y
eliminated. Thirdly, in consideration of the uncertainty at the
dynamics level, a multi-index optimization acceleration-level
joint-drift-free (MOALJDF) scheme is presented to reveal the
influence of dynamics factors on the redundant manipulator
control. Afterwards, theoretical analyses are provided toprove
the stability and feasibility of the corresponding dynamicneural
network (DNN) with the tracking error deduced. Then, computer
simulations, performance comparisons and physical experiments
on different redundant manipulators synthesized by the proposed
schemes are conducted to demonstrate the high performance and
superiority of the NALJDF scheme and the influence of dynamics
parameters on robot control. This work is of great significance
to enhance the product quality and production efficiency in
industrial production.

Index Terms—Acceleration-level joint-drift-free (ALJDF)
scheme, dynamic neural network (DNN), dynamics level, redun-
dant manipulator.

I. I NTRODUCTION

REDUNDANT manipulators, to some extent, perform a
greatly significant role in industrial manufacture, on
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account of more degrees of freedom (DOFs) than nonredun-
dant manipulators in carrying out more complex and difficult
tasks with better performance [1]–[3]. Therefore, in order
to satisfy the demands of different tasks, various redundant
manipulators with special structures have been investigated
and manufactured for decades in different fields, such as
mobile manipulators [4], parallel manipulators [5] and soft
robot arms [6]. In order for redundant manipulators to execute
tasks better in practice, a great deal of research is conducted
for high performance, accuracy and multi-function. Hence,
various properties of the redundant manipulator have been
studied and developed, such as robot-environment interaction
[7], learning ability [8] and obstacle avoidance [9]. At present,
the perfect control of the manipulator still attracts the attention
of many researchers. The kinematic control of redundant
manipulators at different levels has different characteristics and
superiorities. In addition, most of the investigations aremainly
conducted at the velocity level, which are not applicable to
acceleration and/or torque control for the redundant manip-
ulator in practice. Especially, the majority of velocity-level
investigations are not able to deal with the acceleration limit
and cannot avoid effectively the instability and divergence
states of accelerations, which may cause some damage to the
manipulator. Thus, acceleration-level schemes [10]–[15]for
kinematic control of redundant manipulators (for example,the
minimum-acceleration-norm (MAN) scheme [10], [11]) are
very necessary to deal with different tasks.

In recent years, abundant intelligent algorithms and design
formulas have been increasingly constructed and applied to
various fields, such as image processing [16], robotics [17]
and localization [18]. Due to the superior characteristics
different from conventional approaches, neural networks are
acknowledged as effective models with high performance and
have obtained great achievements in electronic and control
domains [19]–[22]. As one of the effective networks, the
dynamic neural network (DNN) is equipped with the ability to
store recursive information thereby reducing the computation
complexity, especially for controlling manipulators. Liet al.
dispose of the redundancy problem of manipulators with high
robustness and accuracy by using DNN method, which can
deal with the problem of position error accumulation [23].
Moreover, DNNs are employed to improve noise tolerance for
redundant manipulators, which can maintain accurate perfor-
mance when polluted by various noises as reported in [24].

In a large number of mechanical assembly lines, redundant
manipulators are required to perform repetitive motions that
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may affect the quality and speed of the task execution, to a
large extent. In detail, a variety of features (including joint
angles, joint velocities, joint accelerations and so on) are
supposed to accurately return to their original values [13].
In addition, non-repetitive problems are deemed to generate
the joint drift phenomenon, which influences the execution of
the task and even can be considered as a failure of the task.
However, there are always fluctuant tracking errors whetherin
simulations or real robotic arms performing repetitive motion
tasks [12]–[15], [25]–[28]. Most investigators may have the
misconception that these tracking errors in the repetitivemo-
tion control of redundant manipulators are invariably attributed
to the inevitable calculation errors, external interference and
so on. Nevertheless, the coupling relationship between the
joint error and Cartesian space error in the existing velocity-
level joint-drift-free scheme is first demonstrated and observed
in [28]. Therefore, in order to reduce the errors of the
existing solutions, accurate control methods for the redundant
manipulator need to be researched urgently. To this end, this
paper theoretically gives an answer to the existence of the
velocity error for the existing acceleration-level joint-drift-
free (ALJDF) schemes [12]–[15], which are systematized by
the generalized acceleration-level joint-drift-free (GALJDF)
scheme. Then, in order to overcome the existing problems,
a novel acceleration-level joint-drift-free (NALJDF) scheme
is proposed with theoretical analyses provided and tracking
error theoretically eliminated. As an extended investigation,
considering the robot dynamics level, a multi-index optimiza-
tion acceleration-level joint-drift-free (MOALJDF) scheme is
investigated to show the influence of dynamics parameters on
robot control.

The remainder of this paper is constructed as follows.
Section II provides the preliminaries and formulates the prob-
lem at the acceleration level. Three ALJDF schemes are put
forward from different standpoints with the corresponding
DNNs derived and theoretical error analyses given in Section
III. Moreover, illustrative simulations on different redundan-
t manipulators are conducted synthesized by the proposed
ALJDF schemes in Section IV to reveal the feasibility of
the three proposed schemes, the disadvantage of the existing
ALJDF schemes and the influence of dynamic layer factors
on robot control. Then, performance comparisons and physical
experiments on different redundant manipulators synthesized
by the GALJDF scheme and NALJDF scheme are performed
in Section V to clearly demonstrate the accuracy and superior
performance of the proposed NALJDF scheme. Conclusions
are presented in Section VI.

II. PRELIMINARIES

In this section, the forward kinematics of redundant manip-
ulators, the joint-drift-free (JDF) index and the positionerror
feedback are explained as preliminaries, which formulate the
problem at the acceleration level.

A. Forward Kinematics

To lay a foundation for the following analyses, the forward
kinematics of a redundant manipulator is given as follows [4],

[23], [33]:
f(q) = r, (1)

wheref(·) contains the relationship between the trajectory of
the end-effectorr ∈ R

n in Cartesian space and the joint angle
q ∈ R

m in joint space withn < m. Generally, it is difficult to
directly solve nonlinear system (1) to obtain the redundancy
resolution for the kinematic control of redundant manipulator.
In contrast, taking the time derivative to both sides of (1) leads
to an affine system, which can readily solve the redundancy
resolution:

J(q)q̇ = ṙ, (2)

whereJ(q) = ∂f(q)/∂q ∈ R
n×m stands for the Jacobian

matrix off(·), which depends on the structure of the redundant
manipulator; q̇ and ṙ represent the joint velocity and the
velocity of the end-effector, respectively. In order to getthe
relation at the acceleration level, calculating the time derivative
of (2) generates

J(q)q̈ = r̈− J̇(q)q̇, (3)

where q̈ and r̈ stand for the joint acceleration and the
end-effector acceleration, respectively;J̇(q) denotes the time
derivative ofJ(q) with its abbreviationJ̇ .

B. JDF Index and Position Error Feedback

In order to figure out the representation of quadratic pro-
gramming index of JDF at the acceleration level, we devise a
joint drift function as follows:

ξ1 = q− q0, (4)

whereq0 ∈ R
m stands for initial angle states. Generally, joint

drift ξ1 demonstrates the performance accuracy of the task, to
some extent. Moreover,q(T ) is supposed to be equal toq0

with T being the task execution time. Therefore,ξ1 should
be equal to zero when a task loop ends. According to the
neural dynamics method [29], i.e.,ξ̇1 = −β1ξ1 with the design
parameterβ1 > 0, we can simply set

ξ̇1 = −β1ξ1 = −β1(q− q0). (5)

Considering thaṫξ1 equals toq̇, rearranging (5) obtains

q̇+ β1(q− q0) = 0. (6)

Designing an error equationξ2 = q̇+ β1(q− q0), we exploit
the neural dynamics method again, i.e.,ξ̇2 = −γ1ξ2 with the
design parameterγ1 > 0, and obtain

q̈+ β1q̇ = −γ1(q̇+ β1(q− q0)), (7)

Then, readjusting (7), one can have

q̈+ (β1 + γ1)q̇+ γ1β1(q − q0) = 0. (8)

Based on the above analyses, the representation of the quadrat-
ic programming index of repetitive motion at the acceleration
level can be designed asc = (β1+γ1)q̇+β1γ1(q−q0) [13],
[14].

Similarly, we designε = r − rd with rd being the desired
end-effector trajectory. The position error feedback at the
acceleration level can be easily derived asd = (β2 + γ2)(ṙ−
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ṙd) + β2γ2(r− rd), with β2 > 0 andγ2 > 0 standing for the
setting parameters.

Remark 1: With regard to the JDF indexc and position error
feedbackd, necessary descriptions are presented as follows.
Similar to equation (8),d originates from the following
relationship

r̈− r̈d + (γ2 + β2)(ṙ− ṙd) + γ2β2(r− rd) = 0,

which can be regarded as a quadratic constant coefficient
differential equation with variableε = r − rd. In this sense,
one has

ε̈+ (γ2 + β2)ε̇+ γ2β2ε = 0,

whose characteristic roots areR1 = γ2 > 0 andR2 = β2 > 0.
According to Routh-Hurwitz criterion [30], the characteristic
roots are in the left of thes plane and thusε is of global
convergence to zero. Analogously, it can be readily obtained
lim
t→∞

q = q0 for (8). Therefore, the JDF indexc and position
error feedbackd are leveraged to drive errors to converge
exponentially [13], [14].

III. SCHEMES, DNNS AND THEORETICAL ANALYSES

This section presents three ALJDF schemes from different
standpoints with the corresponding DNNs and theoretical error
analyses provided.

A. GALJDF Scheme and NALJDF Scheme

In the form of quadratic programming, the GALJDF
scheme, which generalizes the existing ALJDF schemes [12]–
[15] from a kinematic control point of view, can be written as
follows:

min.
1

2
q̈Tq̈+ λcTq̈ (9a)

s.t. r̈a = J q̈+ δd (9b)

q̈ ∈ ν (9c)

with r̈a = r̈d − J̇(q)q̇

c = (β1 + γ1)q̇ + β1γ1(q− q0)

d = (β2 + γ2)(ṙ− ṙd) + β2γ2(r− rd),

where λ > 0 denotes the feedback coefficient of the JDF
index; r̈d represents the desired acceleration of the end-
effector; the superscriptT is the transpose operation of a vector
or a matrix. For simplifying the expression,r̈d − J̇(q)q̇ is re-
placed by an auxiliary variablëra in the following derivations.
Besides, joint limit (9c) is able to control the joint acceleration
in a suitable range to protect redundant manipulators, which
is expressed asν = {a ∈ R

n, ν− ≤ a ≤ ν+}, whereν− and
ν+ denote the lower and upper bounds of the acceleration,
respectively. In addition, the position error feedbackδd is
added withδ > 0 being the feedback coefficient.

It is worth noting that the emergence of the repetitive motion
indexc couples the Cartesian space error with the joint space
error and reduces the accuracy of task execution, which is
proved quantitatively below. This deficiency exists in all the
existing ALJDF schemes [12]–[15]. In this regard, simply

adding an important coefficient(I − J†J) to the GALJDF
scheme (9) generates the NALJDF scheme as follows:

min.
1

2
q̈Tq̈+ λcT(I − J†J)Tq̈ (10a)

s.t. r̈a = J q̈+ δd (10b)

q̈ ∈ ν (10c)

with r̈a = r̈d − J̇(q)q̇

c = (β1 + γ1)q̇+ β1γ1(q− q0)

d = (β2 + γ2)(ṙ− ṙd) + β2γ2(r− rd),

where(I − J†J) is a projection matrix with the superscript†

being the pseudo-inverse of a matrix. For further discussion,
Remark 2 is supplied to introduce projection matrix(I−J†J).
In addition, choosingλ = 0, GALJDF scheme (9) and
NALJDF (10) directly degrade into the MAN scheme as
reported in [10]. For convenience, a symbol definition is given:
A � B represents that each element of matrixA is greater than
or equal to the corresponding element of matrixB.

Remark 2: For projection matrix(I−J†J), some necessary
and useful characteristics are given here.

Firstly, consideringJJ† = I, it can be readily deduced
that J(I − J†J) = J − JJ†J = J − J = 0. In this regard,
projection matrix(I−J†J) has the ability to project Jacobian
matrix J into a zero matrix.

Secondly, with regard to the further structural analyses of
projection matrix(I − J†J), taking advantage of the singular
value decomposition (SVD) method,J can be rewritten as

J = SΥD, (11)

whereS ∈ R
n×n with STS = I; Υ = [Υ0 0] ∈ R

n×m with
Υ0 ∈ R

n×n standing for a diagonal matrix;D ∈ R
m×m with

DTD = I. In view of JT = DTΥTST, JJT can be rearranged
as

JJT = SΥDDTΥTST = SΥΥTST = S(Υ2
0)S

T, (12)

which is a full rank matrix with all eigenvalues greater than
zero. After the matrix inverse operation, one can obtain

(JJT)−1 = (ST)−1(Υ−2
0 )S−1 = SΥ−2

0 ST. (13)

Then,J† can be rewritten as

J† = JT(JJT)−1 = DTΥTST(SΥ−2
0 ST) = DTΥTΥ−2

0 ST.
(14)

Further, it is gained

J†J = DTΥTΥ−2
0 STSΥD = DTΥTΥ−2

0 ΥD =

[

In×n 0

0 0

]

.

Ultimately,

I − J†J =

[

0 0

0 I(m−n)×(m−n)

]

� 0. (15)

According to the diagonal elements,(I −J†J) is divided into
the firstn subsystems and the remainingm − n subsystems.
For the firstn subsystems, i.e., zero diagonal elements, the
NALJDF scheme (10) can be regarded as the MAN scheme for
a non-redundant manipulator. Whether the firstn joints return
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to their original states depends on whether the trajectory of
thenth joint is closed. For the remainingm− n subsystems,
repetitive motion indexc directly acts on the redundant ma-
nipulator to drive the manipulator joints back to their original
positions, which indirectly ensures the repeatability of the first
n subsystems.

Fig. 1. Uniform structure of DNNs (19), (29) and (43).

B. DNN and Theoretical Analyses for GALJDF Scheme

In this part, with the assistant of the gradient method [31] as
well as the acceleration compensation, the corresponding DNN
is built with theoretical analyses provided to demonstratethe
feasibility of the GALJDF scheme (9).

To start the derivations, we design a 2-norm equation of the
velocity error of the end-effector as follows:

ǫ̇ = ||ṙ− ṙd||
2
2/2, (16)

where ṙd denotes the desired velocity of the end-effector.
Taking advantage of the gradient method [31] to minimize
the velocity error, equation (16) can be evolved into

q̈ = −̺
∂(ǫ̇)

∂q̇
= ̺JT(ṙd − ṙ), (17)

where̺ > 0. In view of the joint limit in (9c), (17) can be
adjusted as

q̈ = Pν(̺J
T(ṙd − ṙ)), (18)

wherePν(a) = arg minb∈ν ||b − a||. From the perspective of
neural networks, the joint constraints are designed as a bound
activation function in this paper as

Pν(a) =











ν−, a < ν−

a, ν− < a < ν+

ν+, a > ν+.

Evidently, there exist lagging errors in (18). Recalling the
GALJDF scheme (9), it is necessary to present the scheme
concretely through the neural network. To this end, an accel-
eration compensation is deliberately devised within a recursive
process. Hence, the DNN corresponding to GALJDF scheme
(9) is derived as

q̈ = Pν(̺J
T(ṙd − ṙ) + JTω − λc), (19a)

ω̇ = η(r̈a − JJTω − δd), (19b)

whereJTω−λc denotes the acceleration compensation, which
directly involves the MAN and JDF indices corresponding to
(9a); η > 0 is a design parameter to control the convergence
speed;ω stands for the parameter which promotes the recursive
system operation and stores the recursive state with its time
derivative beingω̇. Furthermore, the uniform structure of the
proposed DNNs in this paper is depicted in Fig. 1.

For completing the kinematic control of the manipulator
by employing the GALJDF scheme (9) with the assistance of
DNN (19), the following theorem is given.

Theorem 1: The optimal solution to the velocity erroṙε =
ṙ − ṙd generated by the GALJDF scheme (9) assisted with
DNN (19) for the redundant manipulator completing the given
JDF task globally converges to−(JT)†(λc+ J†δd)/̺, given
that J†r̈a ∈ in(ν) with in(ν) standing for the interior ofν.

Proof: Due to the construction of DNN (19), there are two
steps to prove the convergence of DNN (19), that is, the
stability of ω and the stability of velocity erroṙε = ṙ− ṙd.

First step: The stability ofω. It is worth noting that the deci-
sive parameterω stores recursive states withη > 0. Therefore,
from a mathematical point of view, proving convergence ofω
can be translated into proving the positive definiteness ofJJT.
Recalling Remark 2, it is evident that full rank matrixJJT is
positive definite. Therefore,̇ω globally converges to 0 andω
is of convergence to(JJT)−1(r̈a − δd).

Second step: The stability of velocity errorε̇ = ṙ − ṙd.
Because of the convergence ofω, considering LaSalle’s in-
variance principle [32], we can obtainω = (JJT)−1(r̈a−δd),
which can be substituted into (19a), thus obtaining

q̈ =Pν(̺J
T(ṙd − ṙ) + JT(JJT)−1(r̈a − δd)− λc)

=Pν(̺J
T(ṙd − ṙ) + J†r̈a − J†δd− λc).

(20)

In consideration ofJ q̈ = r̈ − J̇ q̇ and r̈a = r̈d − J̇ q̇ in the
GALJDF scheme (9) and forward kinematics (3),ε̇ = ṙ − ṙd

can be readjusted as

ε̈ = J(Pν(−̺JTε̇+ J†r̈a − J†δd− λc) − J†r̈a). (21)

Then, devising the Lyapunov functionVg = ε̇Tε̇/2 and its time
derivative generates

V̇g =ε̇TJ(Pν(−̺JTε̇+ J†r̈a − J†δd− λc) − J†r̈a)

=−
1

̺
((−̺JTε̇+ J†r̈a)− J†r̈a)

T

× (Pν(−̺JTε̇+ J†r̈a − J†δd− λc) − J†r̈a).

(22)

GivenPν(a) = arg minb∈ν ||b−a|| as well as||Pν(a)−a||2 ≤
||a− b||2, ∀b ∈ ν, designinga = −̺JTε+ J†r̈a− J†δd− λc
andb = J†r̈a generates

|| − ̺JTε̇+ J†r̈a − J†δd− λc − Pν(−̺JTε̇+ J†r̈a − J†δd

− λc)||2 ≤ || − ̺JTε̇+ J†r̈a − λc− J†δd− J†r̈a||
2,

(23)

whose left side can be expanded as

|| − ̺JTε̇+ J†r̈a − J†δd− λc−

Pν(−̺JTε̇+ J†r̈a − J†δd− λc)||2

=|| − ̺JTε̇+ J†r̈a − J†δd− λc− J†r̈a||
2

+||Pν(−̺JTε̇+ J†r̈a − J†δd− λc) − J†r̈a||
2

−2((−̺JTε̇+ J†r̈a − J†δd− λc)− J†r̈a)
T

×(Pν(−̺JTε̇+ J†r̈a − J†δd− λc)− J†r̈a).

(24)

In combination with (23) and (24), we can get

||Pν(−̺JTε̇+ J†r̈a − J†δd− λc) − J†r̈a||
2

≤2((−̺JTε̇+ J†r̈a − J†δd− λc) − J†r̈a)
T

×(Pν(−̺JTε̇+ J†r̈a − J†δd− λc)− J†r̈a).

(25)
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Putting (22) and (25) together obtains

V̇g +
(λc + J†δd)T

̺
(Pν(−̺JTε̇+ J†r̈a − J†δd− λc)

− J†r̈a) ≤ −
1

2̺
||Pν(−̺JTε̇+ J†r̈a − J†δd− λc)

− J†r̈a||
2 ≤ 0.

(26)

Then, the following proof falls into two cases.
Case I: Devisinġε = −(JT)†(λc+J†δd)/̺ and given that

J†r̈a + J†δd ∈ in(ν), we obtain

Pν(−̺JTε̇+ J†r̈a − J†δd− λc) − J†r̈a = 0. (27)

Thus, it is evident thatV̇g ≤ 0. According to LaSalle’s
invariance principle [32], we substitutėVg = 0 into (22) thus
generating two conditions.

Condition I:Pν(−̺JTε̇+ J†r̈a − J†δd− λc) = J†r̈a.
Condition II: −̺JTε̇+ J†r̈a = J†r̈a.
For Condition I, givenJ†r̈a ∈ in(ν), it is evident to obtain

ε̇ = −(JT)†
λc+ J†δd

̺
. (28)

For Condition II, we directly geṫε = 0.
In addition, when the given task loop ends, the joint limit

and the position error feedback almost equal to zero. In this
sense, the solution to Condition I becomesε̇ → 0. Therefore,
Condition II can be generalized into Condition I. Both Con-
dition I and Condition II are considered, which generates the
sufficient and necessary condition forV̇g = 0. In summary, it
can be easily obtained thatε̇ = −(JT)†(λc+ J†δd)/̺.

Case II: As for the conditioṅε 6= −(JT)†(λc + J†δd)/̺,
simply ignoring the joint limit, equation (22) can be rewritten
as

V̇g = −ε̇TJ(λc + J†δd+ ̺JTε̇),

which can be viewed as a quadratic function withε̇ being a
variable. Evidently, due to the negative quadratic coefficient,
we readily obtain that when−(JT)†(λc + J†δd)/̺ > 0,

∀ε̇ = {x ∈ R
n, 0 < x < −(JT)†(λc+ J†δd)/̺}, ∃V̇ > 0,

and when−(JT)†(λc + J†δd)/̺ < 0,

∀ε̇ = {x ∈ R
n,−(JT)†(λc + J†δd)/̺ < x < 0}, ∃V̇ > 0.

On account of Case II,̇ε may maintain divergence and increase
in an imprecision state.

In conclusion, the optimal solution to the minimum velocity
error generated by DNN (19) for the manipulator completing
the given task globally converges to−(JT)†(λc + J†δd)/̺,
which also implies the existence of the position error and the
acceleration error theoretically. The proof is thus completed.

We can generalize from the derivations above that both
steady-state and transient-state share the optimal solution to
the minimum velocity error (28). Generally, in order to obtain
a small velocity error to stabilize the system,̺ is supposed
to be large enough with a small feedback coefficientλ andδ
according to (28). Given thatλ andd perform key roles in the
completion of the task and a large value of̺ may put a burden
on the machinery, the parameter setting is strictly limitedfor
the GALJDF scheme (9), to some extent.

Remark 3: For the existing solutions to ALJDF schemes
[12]–[15], there exists a paradox about the velocity error and
the joint drift. To be more specific, increasing the feedback
coefficient of the joint drift to obtain the angle repetitionis
deemed to increase the velocity error of the end-effector. Due
to the coupling relationship between the position error and
the velocity error, the position error increases synchronously
as the joint drift decreases. However, when the position error
increases over a certain value and deviates from the desired
path, the joint drift becomes severe in an imprecise state.
Hence, the selection of parameters is relatively strict and
limited for the existing ALJDF schemes [12]–[15].

C. DNN and Theoretical Analyses for NALJDF Scheme

Different from the GALJDF scheme (9),(I − J†J) is
deemed as an important component in the NALJDF scheme
(10). Therefore, adding(I − J†J) in front of the joint drift
index generates the DNN corresponding to the NALJDF
scheme (10) as

q̈ = Pν(̺J
T(ṙd − ṙ) + JTω − λ(I − J†J)c), (29a)

ω̇ = η(r̈a − JJTω − δd). (29b)

In order to prove the stability and feasibility of DNN (29), we
offer the following theorem.

Theorem 2: The velocity error, position error and accel-
eration error generated by the NALJDF scheme (10) aided
with DNN (29) for the manipulator completing the given task
globally converge to zero.

Proof: Similarly, the proof can be divided into two parts,
which is to prove the stability ofω and the stability of velocity
error ε̇ = ṙ − ṙd. Moreover, the stability ofω is proved in
Section III-B. Therefore, we are supposed to prove the stability
of velocity errorε̇. The similar derivations are written as

q̈ = Pν(̺J
T(ṙd − ṙ) + J†(r̈a − δd)− λ(I − J†J)c). (30)

From NALJDF scheme (10) and forward kinematics (3), we
can derive the joint acceleration errorε̈ = r̈− r̈d as

ε̈ = JPν(−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)− r̈a. (31)

Then, making use ofJJ† = I andJ(I − J†J) = 0 obtains

ε̈ =J(Pν(−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + λ(I − J†J)c).

Devise the Lyapunov functionVn = ε̇Tε̇/2 and its time
derivative generates

V̇n =ε̇Tε̈

=ε̇TJ(Pν(−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + λ(I − J†J)c)

=−
1

̺
((−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

+ J†δd− J†r̈a + λ(I − J†J)c)T

× (Pν(−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + λ(I − J†J)c).

(32)
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In consideration ofPν(a) = arg minb∈ν ||b − a|| as well as
||Pν(a) − a||2 ≤ ||a − b||2, ∀b ∈ ν, devisinga = −̺JTε +
J†r̈a−J†δd−λ(I−J†J)c andb = J†r̈a−J†δd−λ(I−J†J)c
generates

|| − ̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c− Pν(−̺JTε̇

+ J†r̈a − J†δd− λ(I − J†J)c)||2 ≤ || − ̺JTε̇+ J†r̈a

− J†δd− λ(I − J†J)c − J†r̈a + J†δd+ λ(I − J†J)c||2,
(33)

whose left side can be extended as

|| − ̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c−

Pν(−̺JTε+ J†r̈a − J†δd− λ(I − J†J)c)||2

=|| − ̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c

− J†r̈a + J†δd+ λ(I − J†J)c||2+

||Pν(−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + J†δd+ λ(I − J†J)c||2

− 2((−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + J†δd+ λ(I − J†J)c)T×

(Pν(−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + J†δd+ λ(I − J†J)c).

(34)

In combination with (33) and (34), we have

||Pν(−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + J†δd+ λ(I − J†J)c||2

≤2((−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + J†δd+ λ(I − J†J)c)T×

(Pν(−̺JTε̇+ J†r̈a − J†δd− λ(I − J†J)c)

− J†r̈a + J†δd+ λ(I − J†J)c).

(35)

Then, combining (32) and (35) together obtains

V̇n + ε̇TJJ†δd ≤ −
1

2̺
||Pν(−̺JTε̇+ J†r̈a − J†δd

− λ(I − J†J)c)− J†r̈a + J†δd+ λ(I − J†J)c||2 ≤ 0.

According to (4) through (8),̇ε andd are designed as follows:

d = (β2 + γ2)ε̇+ β2γ2ε = −ε̈, (36)

and
ε̇ = −β2ε. (37)

Then, it is evident to deduce

d = −β2(β2 + γ2)ε+ β2γ2ε, (38)

and further obtain

ε̇TJJ†δd = ε̇Tδd = β2
2(β2+γ2)ε

Tε−β2
2γ2ε

Tε = γ3
2ε

Tε ≥ 0.

In this sense, we have

V̇n ≤ −ε̇TJJ†δd ≤ 0. (39)

Based on LaSalle’s invariance principle [32], we designV̇n =
0 and it should also be satisfied thatε̇TJJ†δd = 0, which
generates lim

t→+∞
ε̇ = 0 or lim

t→+∞
ε̈ = 0. Further, recalling (36)

and (37), one can come to the conclusion thatlim
t→+∞

ε̇ = 0

and lim
t→+∞

ε̈ = 0 are equivalent conditions and readily obtain

lim
t→+∞

ε̈ = lim
t→+∞

ε̇ = lim
t→+∞

ε = 0. (40)

Evidently, conditionV̇n = 0 holds, if and only ifε̇ = 0. Hence,
(40) is clearly a necessary and sufficient condition. Therefore,
position errorε, velocity errorε̇ and acceleration error̈ε all
converge to zero. The proof is thus completed.

D. Proposal of MOALJDF Scheme

It is worth pointing out that, generally speaking, numerous
schemes [12]–[15] for redundancy resolution of redundant
manipulator at the acceleration level are usually modeled,
analyzed and controlled from a kinematic point of view as
the GALJDF scheme (9) and NALJDF scheme (10) depict.
However, in reality, the uncertainty in robot dynamics does
affect the accuracy of robot control. Therefore, as an extended
investigation, an MOALJDF scheme is designed and construct-
ed to take both robot kinematics and dynamics into account
as follows:

min. α(
1

2
q̈Tq̈+ λcT(I − J†J)Tq̈) + ζ

1

2
τTτ (41a)

s.t. r̈a = J q̈+ δd (41b)

q̈ ∈ ν (41c)

with r̈a = r̈d − J̇ q̇

τ = M q̈+ p(q̇,q) + g(q)

c = (β1 + γ1)q̇+ β1γ1(q− q0)

d = (β2 + γ2)(ṙ− ṙd) + β2γ2(r− rd),

where τ ∈ R
m denotes the joint torque;M ∈ R

m×m

stands for the inertial matrix;p(q̇,q) ∈ R
m symbolizes the

centrifugal force vector;g(q) ∈ R
m represents the gravity

vector;α ∈ (0, 1) andζ ∈ (0, 1) are the weight parameters
of dynamics and kinematics, respectively, withα + ζ = 1.
It can be readily observed that the MOALJDF scheme (41)
incorporates the motion control indices of the minimum ac-
celeration norm [10], repetitive motion planning [28] and
minimum torque norm [34], which involves both kinematics
and dynamics simultaneously. Correspondingly, from (19a), it
can be naturally designed that

q̈ = ̺JT(ṙd − ṙ) + α(JTω − λc)− ζMτ, (42)

which can be simplified as

q̈ = (I+ζMM)−1(̺JT(ṙd− ṙ)+α(JTω−λc)−ζM(p+g)).

Further, imposing joint constraints to (42) and combining the
recursive process (19b) lead to

q̈ = Pν((I + ζMM)−1(̺JT(ṙd − ṙ) + α(JTω − λc)

− ζM(p+ g))), (43a)

ω̇ = η(r̈a − JJTω − δd), (43b)

which is the DNN corresponding to the MOALJDF scheme
(41). As for the stability and error analysis of the system,
similar to the proof to Theorem 1, one can simply imply that
the DNN (43) is of great convergence globally and that the
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Fig. 2. Computer simulations on employing the GALJDF scheme(9) to control the UR5 manipulator for tracking a four-leaf clover path aided with
DNN (19). (a) Motions of redundant manipulator. (b) Desiredpath and end-effector trajectory. (c) Time history of jointangle. (d) Time history of joint
velocity. (e) Time history of joint acceleration with jointlimit. (f) Time history of position error. (g) Time history of velocity error. (h) Time history of
σ = −(JT)†(λc+ J†δd)/̺.
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Fig. 3. Computer simulations on employing the GALJDF scheme(9) and the NALJDF scheme (10) to control the UR5 manipulatorfor tracking a four-leaf
clover path aided with DNN (19) and DNN (29). (a) Time historyof joint angle synthesized by DNN (29). (b) Time history of joint velocity synthesized by
DNN (29). (c) Time history of position error synthesized by DNN (29). (d) Time history of velocity error synthesized by DNN (29). (e) Time history of joint
angle synthesized by DNN (19). (f) Time history of joint velocity synthesized by DNN (19). (g) Time history of position error synthesized by DNN (19). (h)
Time history of velocity error synthesized by DNN (19).

velocity error generated by the DNN (43) is positively related
to the uncertainty of dynamics parameters. Due to the space
limitation, the specific derivations are omitted, which canbe
referred to the proof to Theorem 1.

IV. I LLUSTRATIVE SIMULATIONS

This section provides multiple simulations based on dif-
ferent redundant manipulators synthesized by the GALJDF
scheme (9), the NALJDF scheme (10) and the MOALJDF
scheme (41) with the assistance of DNN (19), DNN (29) and
DNN (43). In what follows, the used redundant manipulators

include the UR5 manipulator, 6-DOFs planar robot and KUKA
manipulator with structural parameters and dynamics param-
eters referred to [33]–[35]. As far as the fixed parameters are
concerned, it is selected asβ1 = γ1 = β2 = γ2 = 1, η = 1000
andδ = 250 with the task execution timeT = 10 s for Section
IV and Section V.

A. GALJDF Scheme on Redundant Manipulator

In this part, the GALJDF scheme (9) is employed on the
UR5 manipulator tracking a four-leaf clover path with the aid
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Fig. 4. Computer simulations on employing the MOALJDF scheme (41) aided with DNN (43) to control a 6-DOFs redundant manipulator for tracking a
parallelogram path. (a) Desired path and actual trajectory. (b) Time history of joint angle. (c) Time history of joint velocity. (d) Time history of joint torque.
(e) Time history of position error. (f) Time history of velocity error.

of DNN (19). Parameter settings areλ = 3 and̺ = 20000. In
addition, the initial angle stateq0 = [0, 3.6, 0.5, −0.5, 2, 0]T

rad and the joint limit isν+ = −ν− = 2.5 rad/s2. In Fig.
2(a) and (b), it is concluded that the given task is completed
successfully with the actual trajectory coinciding with the
desired trajectory. The generated joint angle in Fig. 2(c) and
the joint velocity in Fig. 2(d) all return to their original
states. As Fig. 2(e) plots, the joint limit is activated withthe
acceleration fluctuation. Afterwards, the position error shown
in Fig. 2(f) sustains increasing with the maximum error less
than1.5× 10−3 m and the velocity error is of the order10−3

m/s as shown in Fig. 2(g). It is worth noting that the curve of
σ = −(JT)†(λc+J†δd)/̺ in Fig. 2(h) and the velocity error
in Fig. 2(g) have similar or even identical values and trends,
which verifies the correctness of the theoretical derivation
as deduced in (28). These results embody the stability and
feasibility of the GALJDF scheme (9) aided with DNN (19).

B. NALJDF Scheme on Redundant Manipulator

In this part, for comparison, the NALJDF scheme (10) and
the GALJDF scheme (9) are respectively conducted on the
UR5 manipulator with the aid of DNNs (29) and (19) for track-
ing a four-leaf clover path. To prove the paradox in Remark
3, we devise a large joint drift feedback coefficientλ = 10
and a small velocity error feedback coefficient̺ = 2000.
Simulation results are presented in Fig. 3. It is worth noting
that Fig. 3(a) through (d) are synthesized by the NALJDF
scheme (10) and Fig. 3(e) through (h) are synthesized by the
GALJDF scheme (9). From Fig. 3(a) and (b), it is evident that
the UR5 manipulator successfully completes the given task
with the angle and the joint velocity back to their original
states. Moreover, the velocity error is of the order10−4 m/s

with the maximum about2.0×10−4 m/s and the position error
is of the order10−5 m with the maximum less than8×10−5 m
in an accurate state as shown in Fig. 3(c) and (d), respectively.
As a comparison, for the GALJDF scheme (9), we discover
that Fig. 3(e) through (h) are all in an imprecise state which
is deemed to fulfill the given task unsuccessfully. As Fig. 3(g)
and (h) illustrate, the velocity error and the position error are
too large and are of the order10−2. Due to the large position
error and the velocity error, the trajectory deviates from the
desired path, which causes large joint drift as indicated in
Fig. 3(e) and (f) with joint angles and joint velocities not
returning to their original states. It is evident that underthe
design parameter settings, the GALJDF scheme (9) fails to
complete the given task. The above comparison simulations
indicate the correctness of the paradox in Remark 3 of the
existing ALJDF scheme [12]–[15] as well as the superior and
accurate performance of the NALJDF scheme (10).

C. MOALJDF Scheme on Redundant Manipulator

It is worth pointing out that in some of the existing liter-
atures on robot motion planning [12]–[15], [25]–[28], redun-
dant robot manipulators are modeled, analyzed and controlled
only from the perspective of kinematics. Nevertheless, it is
beyond all questions that the uncertainty in robot dynamics
indeed affects the accuracy of robot control. As a result,
simultaneously considering robot dynamics and kinematics
is relatively comprehensive, which is much closer to real-
world applications. Therefore, the simulations driven by the
MOALJDF scheme (41) aided with DNN (43) are conducted
based on a 6-DOFs planar redundant manipulator, whose
structural parameters and dynamics parameters can be referred
to [34], for JDF task with results plotted in Fig. 4. In addition,
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TABLE I
COMPARISONSAMONG GALJDF SCHEME AND NALJDF SCHEME FORCONTROLLING UR5 WITH DIFFERENTCOEFFICIENTS

(̺=105 ) The GALJDF scheme (9) as a systematization of [12]–[15] TheNALJDF scheme (10)

λ MPE⋆ (m) MVE∗ (m/s) JD◦ (rad) MPE⋆ (m) MVE∗ (m/s) JD◦ (rad)

0.1 5.14×10−5 1.68×10−4 5.37×10−2 4.06×10−5 1.06×10−4 5.37×10−2

0.5 2.77×10−4 2.45×10−4 9.10×10−3 4.46×10−5 1.70×10−4 9.10×10−3

1 5.59×10−4 4.54×10−4 2.80×10−3 4.43×10−5 1.09×10−4 2.90×10−3

2 1.10×10−3 9.44×10−4 1.60×10−3 4.41×10−5 1.62×10−4 1.62×10−3

3 1.70×10−3 1.30×10−3 6.84×10−4 4.41×10−5 1.01×10−4 7.26×10−4

5 2.80×10−3 2.20×10−3 3.74×10−4 4.41×10−5 1.05×10−4 1.38×10−4

10 5.50×10−3 4.40×10−3 6.37×10−4 4.42×10−5 1.10×10−4 1.03×10−4

50 2.46×10−2 1.91×10−2 2.80×10−3 4.41×10−5 1.31×10−4 2.57×10−4

100 4.42×10−2 3.27×10−2 5.20×10−3 4.42×10−5 1.27×10−4 2.75×10−4

⋆The ‘MPE’ stands for the maximum position error in time history.
∗The ‘MVE’ stands for the maximum velocity error in time history.
◦The ‘JD’ stands for the mean of the elements of vector|q0 − q(T )| with task cycle durationT = 10 s.

(a)

(b)

Fig. 5. Snapshots of the physical experiments on the KUKA redundant
manipulator for tacking a four-leaf clover path. (a) Physical experiments
synthesized by NALJDF scheme (10) aided with DNN (29). (b) Physical
experiments synthesized by GALJDF scheme (9) aided with DNN(19).

we selectα = 0.995, ζ = 1 − α = 0.005, original state
θ0 = [π/12]6×1 rad, λ = 3, and ̺ = 104. One can readily
obtain from Fig. 4(a) through (c) that the given JDF task is
well accomplished with joint velocity and the joint angle back
to their initial states. Furthermore, joint torques vary within
a reasonable range in Fig. 4(d). It is worth noting that the
initial values of joint torque are nonzero, which does affect
the generated error and acceleration. As depicted in Fig. 4(e)
and (f), the velocity error is large at 0 s and then gradually
approaches zero with position error less than2 × 10−3 m.
From the above results, we can draw a general conclusion
that the unknown parameter variables in kinematics can affect
the execution accuracy of the task and that the designed DNN
(43) with great convergence can reduce the affected error as
much as possible, thus getting a relatively precise state.

V. PHYSICAL EXPERIMENTS AND COMPARISONS

For further comparison with the GALJDF scheme (9)
and the NALJDF scheme (10), plenty of simulations for
the two ALJDF schemes on UR5 manipulator tracking a
four-leaf clover path are conducted with different joint drift
feedback coefficients in Table I. For other parameter set-
tings, we design̺ = 105 and the initial angle stateq0 =
[0, 3.6, 0.5, 0.5, 2, 0]T rad with differentλ. It is worth
highlighting that the GALJDF scheme (9) is the systemati-
zation of the existing ALJDF schemes [12]–[15]. Observing
Table I, it is evident that as the coefficientλ increases, the
velocity error and the position error increase synchronously
with accuracy reduction which reduces the quality of the task
for the GALJDF scheme (9). Meanwhile, the joint drift starts
to decrease whenλ gets a small value and then increases,
which coincides with Remark 3. Nevertheless, the NALJDF
scheme (10) demonstrates a better performance by compar-
ison. It is easy to discover that the position error and the
velocity error maintain accurate which are of the order10−5

m and10−4 m/s all the time with different joint drift feed-
back coefficients, which exhibits the decoupled relationship as
depicted in Theorem 2. In addition, the joint drift decreases
as the coefficientλ increases, which becomes more and more
accurate. By comparison, performance analyses on the two
ALJDF schemes depict that the GALJDF scheme (9) is only
suitable for a small range of joint drift feedback, that the
NALJDF scheme (10) is not limited by the coefficients to keep
a precise state, and that for the same parameter setting, the
NALJDF scheme (10) can achieve more accurate performance
with tiny tracking error, which gives full expressions to the
superiority of the proposed NALJDF scheme (10).

To illustrate the performance comparisons of the GALJDF
scheme (9) and the NALJDF scheme (10) more vividly and
convincingly, physical experiments on the KUKA redundant
manipulator, which is equipped with 7-DOFs and a marking
pen attached to its end-effector, for tracking a four-leaf clover
path are performed driven by the DNN (29) and DNN (19).
Specifically speaking, the desired trajectory signals (rd, ṙd and
r̈d) are set up in advance; the status signals of the KUKA
manipulator (q, q̇, r and ṙ) are measured in real time from
the KUKA manipulator; the structure signals (J and J̇) are
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TABLE II
COMPARISONSAMONG DIFFERENTNEURAL-NETWORK-BASEDMETHODS FORELIMINATING JOINT DRIFT OF REDUNDANT MANIPULATORS

Scheme level Repetitive motion Error compensation Joint limits Joint drift Error decoupling Theoretical tracking error

Method (9) Acceleration Yes Yes Yes Non-zero No Non-zero

Method (10) Acceleration Yes Yes Yes Zero Yes Zero

Method in [12] Acceleration Yes No Yes Non-zero No Non-zero

Method in [13] Acceleration Yes No Yes Non-zero No Non-zero

Method in [14] Acceleration Yes No Yes Non-zero No Non-zero

Method in [15] Acceleration Yes No Yes Non-zero No Non-zero

Method in [25] Velocity Yes No Yes Non-zero No Non-zero

Method in [26] Velocity Yes No No Non-zero No Non-zero

Method in [27] Velocity Yes No No Non-zero No Non-zero

Method in [28] Velocity Yes Yes Yes Non-zero No Non-zero

generated by calculation. On this basis, the DNN (29) and
DNN (19) continuously generate the acceleration commands
to control the KUKA manipulator in real time with the tracking
error reduced by the position error feedback. In addition, we
design λ = 30 and ̺ = 2000, and the snapshots of the
experiment results are portrayed in Fig. 5(a) and (b). It is
deserved to point out that as demonstrated in Fig. 5(a), the
KUKA redundant manipulator driven by NALJDF scheme
(10) achieves excellent performance with tiny error and thus
the practicability is verified. On the contrary, the GALJDF
scheme (9) embodies poor performance as illustrated in Fig.
5(b). It is evident that the asymmetric trajectory deviatesfrom
the desired path in Fig. 2(b) with a large tracking error.
Furthermore, these undesired results in Fig. 5(b) verify the
deficiency of the existing ALJDF schemes [12]–[15] that the
large feedback coefficient of joint drift can lead to the decline
of end-effector task precision.

Beyond that, comparisons between the existing neural-
network-based JDF methods and the proposed scheme (10) are
presented with results supplied in Table II. Different methods
to solve the joint drift problem have their own characteristics
from different aspects. In comparison with the existing neural-
network-based methods for eliminating joint drift of redundan-
t manipulators [12]–[15], [25]–[28], the proposed NALJDF
method (10) has a great advantage in error analyses and error
eliminations. On this basis, the proposed NALJDF method (10)
is the first to decouple joint space errors and Cartesian space
errors at the acceleration level and further eliminates thejoint
drift and position error, theoretically.

VI. CONCLUSIONS

Base on the robot kinematics, this paper has generalized the
existing ALJDF schemes by presenting a GALJDF scheme and
pointed out the deficiencies of the existing ALJDF schemes as
a paradox about the theoretical existence of the joint velocity
error. As an improvement, an NALJDF scheme has been
proposed with the theoretical tracking error eliminated. Then,
as an exploratory investigation, the uncertainty of the robot
dynamics has been researched with the MOALJDF scheme
provided. Afterward, the acceleration compensation has been
leveraged to assist the gradient method in completing the
construction of the corresponding DNNs, whose feasibility
and stability have been provided by theoretical analyses.
Moreover, computer simulations and physical experiments on

employing the proposed schemes to control different redun-
dant manipulators to track the given task have been conducted,
which demonstrates the feasibility of the proposed schemes
and the correctness of the theoretical analyses. In addition,
comparison results among the existing approaches and the
proposed methods have been provided to verify the precise
performance and superiority of the proposed NALJDF scheme.
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