442 research outputs found

    Effects of Hot Extrusion and Heat Treatment on Mechanical Properties and Microstructures of AZ91 Magnesium Alloy

    Get PDF
    AbstractThe effects of heat treatment on the microstructure, tensile property and fracture behavior of as-extruded AZ91 magnesium alloy were studied with OM and SEM. The results show that the grains of as-cast AZ91 alloy are refined by hot extrusion due to dynamic recrystallization, and the mechanical properties are improved obviously. The ductility is significantly enhanced after solution treatment of the as-extruded AZ91 alloy, tensile strength is almost the same as before, and hardness is significantly reduced after solution treatment and artificial aging treatment. The tensile strength reduced and the ductility is significantly enhanced of as-extruded after annealing processes. The fracture surface of as-extruded AZ91 magnesium alloy has the mixed modes of ductile and brittle characteristics. But after T6 or annealing treatment, the dimple number increases evidently

    Ultimate bearing capacity of circular shallow foundations in frozen clay

    Get PDF
    This paper presents a study on the ultimate bearing capacity of circular shallow foundation in frozen clay. The bearing capacity were determined by model test, numerical simulation and analytical solution. In numerical simulation, the temperature field considering the phase transition was transformed into a temperature load and applied to a three-dimensional solid model. The generalized Kelvin model was used to describe the creep of frozen clay, and step loading was used. Based on the tests results that frozen soil fails because of local shear, we proposed an analytical model to estimate the ultimate bearing capacity of circular shallow foundation with local shear failure mechanisms. Based on the limit equilibrium theory, it was assumed that the fracture plane of the model only develops to the boundary between the transition zone and the passive zone. The results from present study and some other method are presented and compared, which has shown and verified the feasibility of our method. And the analytical solution is in good consistent with the results of the model test and numerical simulation

    A Random Multi-Trajectory Generation Method for Online Emergency Threat Management (Analysis and Application in Path Planning Algorithm)

    Get PDF
    This paper presents a novel randomized path planning algorithm, which is a goal and homology biased sampling based algorithm called Multiple Guiding Attraction based Random Tree, and robots can use it to tackle pop-up and moving threats under kinodynamic constraints. Our proposed method considers the kinematics and dynamics constraints, using obstacle information to perform informed sampling and redistribution around collision region toward valid routing. We pioneeringly propose a multiple path planning method using ‘Extending Forbidden’ algorithm, rather than using variant cost principles for online threat management. The threat management method performs online path switching between the planned multiple paths, which is proved with better time performance than conventional approaches. The proposed method has advantage in exploration in obstacle crowded environment, where narrow corridor fails using the general sampling based exploration methods. We perform detailed comparative experiments with peer approaches in cluttered environment, and point out the advantages in time and mission performance

    Radiation driven outflow in active galactic nuclei: the feedback effects of scattered and reprocessed photons

    Full text link
    We perform time-dependent, 2DHD numerical simulations to study the dynamics of a slowly rotating accretion flow from sub-pc to pc scales under the irradiation from the central AGN. Compared to previous work, we improve the calculation of the radiative force due to X-rays. More importantly, in addition to radiative pressure and radiative heating/cooling directly from the central AGN, in the momentum equation we also include the force due to the scattered and reprocessed photons. We find that the accretion flow properties change significantly due to this "re-radiation" effect. The inflow rate at the inner boundary is reduced, while the outflow rate at the outer boundary is enhanced by about one order of magnitude. This effect is more significant when the density at the outer boundary is higher. The properties of outflows such as velocity, momentum and energy fluxes, and the ratio of outflow rate and the accretion rate, are calculated. We find that the efficiency of transferring the radiation power into the kinetic power of outflow is typically 10−310^{-3}, far below the value of ∼0.05\sim 0.05 which is assumed in some cosmological simulations. The effect of the temperature of the gas at the outer boundary (T0T_0) is investigated. When T0T_0 is high, the emitted luminosity of the accretion flow oscillates. This is because in this case the gas around the Bondi radius can be more easily heated to be above the virial temperature due to its high internal energy. Another question we hope to address is the so-called "sub-Eddington" puzzle. Observationally, the luminosity of almost all AGNs are sub-Eddington, while theoretically the luminosity of an accretion flow can easily be super-Eddington. We find that even when the re-radiation effect is included and outflow does become much stronger, the luminosity, while reduced, can still be super-Eddington.Comment: 16 pages, 7 figures, accepted by MNRA

    Observational and Simulative Study of a Local Severe Precipitation Event Caused by a Cold Vortex over Northeast China

    Get PDF
    A severe precipitation event around Changchun-Yongji in Jilin Province, China, during 27–29 July 2010 was investigated, with a focus on the comparative analysis of 2 heavy precipitation episodes. This was done using NCEP gridded analysis data, intensive surface observations, and radar and satellite measurements. The Weather Research and Forecast (WRF) model was used to simulate the precipitation process and explore mechanisms for the development and dissipation of the severe precipitation event. Precipitation in the first stage was induced by the convergence of northwesterly winds at the rear of the cold vortex and southwesterly winds that reached the rainfall region. However, in the second stage, because of the blockage caused by Changbai Mountain, winds at the bottom of the cold vortex turned from the northwest to the northeast. These winds strongly converged with the southwesterly winds and continuously triggered new convective clouds, which were associated with cold centers at the surface. The intensity of the cold center modulated the strength of the convective cells and resulting precipitation quantity. Furthermore, the local terrain features and direction of the motion of the airflows were critical in triggering convection

    Hierarchical Planning and Control for Box Loco-Manipulation

    Full text link
    Humans perform everyday tasks using a combination of locomotion and manipulation skills. Building a system that can handle both skills is essential to creating virtual humans. We present a physically-simulated human capable of solving box rearrangement tasks, which requires a combination of both skills. We propose a hierarchical control architecture, where each level solves the task at a different level of abstraction, and the result is a physics-based simulated virtual human capable of rearranging boxes in a cluttered environment. The control architecture integrates a planner, diffusion models, and physics-based motion imitation of sparse motion clips using deep reinforcement learning. Boxes can vary in size, weight, shape, and placement height. Code and trained control policies are provided
    • …
    corecore