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Abstract

This paper presents a novel randomized path planning algorithm, which is a goal and
homology biased sampling based algorithm called Multiple Guiding Attraction based
Random Tree, and robots can use it to tackle pop-up and moving threats under
kinodynamic constraints. Our proposed method considers the kinematics and dynamics
constraints, using obstacle information to perform informed sampling and redistribu-
tion around collision region toward valid routing. We pioneeringly propose a multiple
path planning method using ‘Extending Forbidden’ algorithm, rather than using variant
cost principles for online threat management. The threat management method performs
online path switching between the planned multiple paths, which is proved with better
time performance than conventional approaches. The proposed method has advantage
in exploration in obstacle crowded environment, where narrow corridor fails using the
general sampling based exploration methods. We perform detailed comparative exper-
iments with peer approaches in cluttered environment, and point out the advantages in
time and mission performance.

Keywords: multiple path planning, online emergency threat management,
path switching, goal biased probability, sampling based algorithm

1. Introduction

Robot path planning have been witnessed a great achievement these years with the various

application of robots [1, 2]. Problems such as path planning, motion planning, and online

moving obstacle management have been widely studied toward the goal of performing auton-

omy. Unmanned Aerial Vehicles (UAVs), an easy access robot platform, has been increasingly

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



applied in research and commercial areas in recent years. UAVautonomy denotes the ability of

tackling with obstacle (or called no-fly zone) avoidance and trajectory planning online from a

starting position to a destination while satisfying the kinematic constraints [3].

For robot path planning, emergency threat management (ETM) is one of the hardest challenges

that needs to be solved, where a sudden threat may burst into view or dynamic obstacles are

detected on line, especially when UAV is following the desired path. Under such conditions,

UAV should consider the following attributes:

1. Time efficiency: The most important requirement for ETM algorithm is time efficiency. For

general ETM, the configuration is periodically updated, such as heuristic algorithm A* [4],

which it is computationally intensive if the map is represented with high resolution. In

order to guarantee safety, ETM requires real-time performance.

2. Kinematic feasibility: Kinematic feasibility denotes that the output of the planner meets the

kinematic constraints of the robot as well as the environment. The constraints include: (a)

Path smoothness: The planner is required to output kinematic smooth path, sometimes even

kinodynamically feasible as well. Thus, the path should meet the state of art tracking con-

straints, and enables low tracking error forUAV; (b)Minimum cost of switching: The strategy

of handling the threat, especially ET, is to find the cost minimum path by generating a new

path or multiple paths besides the initial one. The cost for choosing the best path should take

the dynamic constraints, energy consumption and time performance into consideration.

3. Specific requirements: UAVs have already been applied to many areas, such as inspection,

photography, and monitoring. They have to meet some specific requirements according to

environments and system constraints. For example, best pose based illumination of tunnel

inspection for crack and spalling [5], and stable tracking with obstacle avoidance as UAV

photography [6] which should be able to keep stable capturing even during the flying.

Development with open robot platform [7] and field implementation [8] has witnessed the

promising performance of Sampling Based (SB) methods. SB algorithms (SBA) have the

advantages for planning in high dimensional space, and it is with the ability to deal with

multiple classes of path or motion planning problem in both static and dynamic environment

[9]. Rapidly-exploring random trees (RRTs) are single query methods which obtain Voronoi

biased property and only generate homotopy paths simultaneously [12]. Although it proposes

to solve the multiple degrees of freedom (DOF) operating problems in known static environ-

ments [10, 11], SBA shows great performance of dealing with any kind of path or motion

planning problem in complex environments for unmanned ground robots or aerial robots.

In this paper, we introduce two biased-sampling methods, which are obstacle biased and

Homologous Classes (HC) biased to perform path planning respectively. For obstacle biased

path method, we have discussed in [13] with UAV demonstration. For HC classed biased

approach, it aims at solving the ET problem by generating alternative paths for online dynam-

ically switching. HC introduces an online dynamic reconfiguration approach to ensure singu-

larity between paths, which tries to generate more paths with different obstacle reference.

Thus, it can perform alternative switching online when confronted with ET. The obstacle

biased planning method is called Guiding Attraction based Random Tree (GART) and HC
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biased is called Multi-GART (MGART). We consider the environment to be known as a priori

to us, and the UAVs are with the ability to understand the clearance region. Experiments and

comparative simulations are illustrated to provide the effective evaluation of the proposed

methods.

2. Preliminary materials

2.1. Homology and homotopy

For path planner, the purpose is to find a feasible path pf (cost minimum or complete) from the

initial position to the goal position in the workspaceW∈R{n}, n denotes the dimension of space

the robots locate. A general cost function can be represented as:

J ¼

ð
cenergy þ ctime þ cthreatdt (1)

The cenergy, ctime, cthreat denote energy cost, time consumption, and threat respectively. These

costs are not fixed, since the energy cost can be path length, and time consumption can change

according to the velocity limitation. For cost constrained path planner, the goal is to find the

asymptotic optimal rather than the completeness solution. Then, more than one path can be

found during the process, and the paths can be homotopic or belong to different homotopic

classes (or called homology).

It is illustrated in Figure 1. Given a continuous map H : I� I! Γ or H : h(s, t) = ht(s), Γ denotes

the topological space and I = [0, 1] is the unit interval. The obstacle regions are labeled with Ro1,

xinitial ¼ h 0; tð Þ denotes start point, xinter ¼ h 1; tð Þ denotes the goal position, xinter denotes an

inter node for obstacle avoidance. For the continuous deformation, given h(s, 0) =π0, h(s, 1) =π1,

the path can be continuously mapping through π0 to π1 with t∈ [0, 1]. For any path deformed

between, they are homotopic with π0, π1 if and only if they stay in the closed loop π0∐ �π1,

where the closed loop cannot collide with any obstacle region.

Definition 1—Homotopic Paths: It denotes the equivalence class of all paths under continu-

ous mapping H : h(s, t) = ht(s), which locates in the closed loop formed h(s, 0)∐ �h(s, 1). Any

Figure 1. Homotopic and homologous classes and paths.
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path in the set can be continuously deformed into any other without colliding with any

obstacle in the space. For all paths in the set, they are with the same fixed end points.

We can conclude that π2 and π3 belong to the same homotopic class. However, we can find

path π4, which shares the same start and ending node, cannot be continuously deformed to π3

due to the isolation of the obstacle. It means (π3 ∪ �π4) ∩Ro3 6¼Θ. In such case, we call π3 and

π4 are homologous, and they belong to different homotopic classes.

Definition 2—Homologous Paths: Paths, which follows the same continuous mapping H : h

(s, t) = ht(s), cannot form a closed loop by h(s, 0)∐ �h(s, 1). The homologous paths belong to

different homotopic classes.

2.2. Problem statement

Path planning follows a common procedure to perform trial and error process under empirical

constraint to achieve completeness. The problem of path planning does not only solve a

problem for exploration optimization, but also try to model the environment with a best

descriptor as discussed in [13]. Let us take a look again with the problem of path planning

which can be represented as:

H ¼ h sð Þjxinitial ¼ h 0ð Þ, xinitial ¼ h 1ð Þ, s∈ 0; 1½ �f g (2)

The path h(s) (homologous) should stay in obstacle free region Rfree, that is, h(s)∈Rfree.

Usually, the path is piecewise continuously, and it can also be smoothed to obtain first order

continuous thus to ensure kinematics continuous [14]. Besides the exploration to achieve

completeness (in Eq. (1)), the obstacle modeling method is also important and affect the

planning results.

To solve this problem, this paper proposed a multi-path online switching approach, that is,

the path planner can find alternative homologous-paths. Then, this paper designs an online

fast switching strategy. For multiple path planner, it aims at finding as many paths as

possible,

Halter ¼ ∪i¼1h
i x tð Þ; u tð Þð Þ (3)

Halter denotes the set of all the alternative paths hi(x(t), u(t)), x(t) denotes the state, and u(t)

denotes the control. However, the mission planner cannot use all the planed paths for online

switching, it should find the reasonable paths without redundancy. We propose the follow

rule,

Hreason ¼ hi
� �

�hi H
6¼

hj,∇i 6¼ j g (4)

Hreason denotes the paths set where any two paths are not homotopic to each other, H
6¼

denotes

non-homotopy. Now, we have the paths which keep distinguishable from each other with

different obstacles sequence surrounding.

Kinematics238



3. Rapidly exploring random tree path planner

In this section, we try to describe the underlying research of rapidly-exploring random tree

(RRT [12], upon which we propose a novel state of art approach to facilitate the active

exploration in cluttered environments). SBAs are incremental search algorithms which per-

form random sampling with collision checking for extension, and they were first proposed to

solve high dimension planning problem. They have the merits of considering the control and

kinematics constraints together, and can incrementally construct a tree from the start node (or

initial state) to the goal node (or goal state) with continuously sampling and expansion.

It is shown Figure 2, the whole tree graph by exploration is represented as GT, the black solid

dot denotes the valid state within step accessibility under kinematics constraints, and the black

solid lines connect each parent state with child state for extension. Every step, a new sample

gsample will be generated randomly. It should be cleared to all that the initial random sampling

does not mean a fixed connection, that is, the random sampling can be a direction for

extending. Then, the random sample gsample tries to find the nearest state in the tree for

connection under minimum Euclidean metric,

gparent ¼ sup min
gi ∈GT

E gi; gsample

� �

(5)

Where gi is an element of all valid states set GT.

3.1. RRTconnection with kinematic constraints

For RRT planner, given a system with state _xx ; _xy ;

_θ
� �

, and a general form of system model:

_Xx ¼ f x xx; uxð Þ

_xy ¼ f y xx; uy
� �

_θ ¼ f θ θ; uθð Þ

8

>

<

>

:

(6)

It can extend with simply random sampling with control inputs [ux, uy, uθ]. The random

sample has to follow the kinematics constraints. Given the robot system, the differential

Figure 2. RRTs propagate by applying the minimal cost criterion to connect the newly sampled guard to the previous tree.
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constraints can be represented as a set of implicit equations as g x; _xð Þ ¼ 0, and it can be further

represented as:

_x ¼ f x;uð Þ (7)

Here, x denotes the state, and u∈U denotes the valid control in allowable controls set. Given

the parent state gparent(t), the time step follows a Δt limits. Then, the control inputs vary with

u = {u(t
0

)| t ≤ t
0

≤ t +Δt}. To compute x(t +Δt), we can follow a typical procedure as [12]. It should

be noted that the planner should extend toward the newly sampled gsample. The planner first

computes the possible region of reachability from current state x(t):

x tþ Δtð Þ∈ x tð Þ þ f x tð Þ;u tð Þ � Δt∙eð Þ; x tð Þ þ f x tð Þ;u tð Þ þ Δt∙eð Þ½ � (8)

where e is the maximum first order factor of control input. RRT now picks a new state along

the direction from parent to new sample, that is, gnew∈ [x(t) + f(x(t), u(t)�Δt ∙ e), x(t) + f(x(t), u

(t) +Δt ∙ e)] and gnew = gparent + δ(gsample� gparent) with δ∈ [0, 1].

3.2. Voronoi biased incremental search

Before discussing the Voronoi biased property of the SBAs, let first introduce some basic

notation. Given a set of points S = {si| i = 1, 2,…, n} in a n-dimension space Χ. For any two

distinct points sp and sq in set S, the dominant region (Voronoi region) of sp over sq is defined

as the region where any inside point should be closer to sp over sq, that is,

R sp ¼ χ∈

�

�

�

�

�sp � χ
�

�

L
< sq � χ

�

�

�

�

L
n o

(9)

Where χ is the dominant region corresponding to sp, ||
L denotes the Lebesgue measurement.

In a normal case, any point si has its own dominant region with,

Rsi ¼ χ∈

�

�

�jsi � χjL < sj � χ
�

�

�

�

L
, for all i 6¼ j

n o

(10)

Normally, random sampling of RRT follows a Monte-Carlo Method [15] to perform an uni-

formly sampling in a n-dimensional space under Lebesgue measurement. We can look back at

the beginning of Section 3, the new sampled node tries to connect to the nearest node under

Euclidean metric. We can now analyze the problem in another perspective that given gparent
and gs, they connect to the same origin go. Then, a new sample gsample is generated randomly

following a Monte-Carlo process. In order to explore and reach the goal, gsample tries to connect

to the tree following the metric defined in Eq. (5). It means that gparent and gs can be connected

for expansion under minimum distance principle, then gsample has to be assigned to the

dominant region which subjects to a closer point (the Voronoi region). Under this principle,

gparent and gs can acquire new resource for extension with the ability to keep distinct region

and extending their branches.

A typical Voronoi-biased exploration using sampling can be seen in Figure 3, where each

branch keeps distinct with each other to form a star network like structure and it behaves the
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same for heuristic informed RRT [16]. Here, unlike the dominant region of a point, RRT branch

can be also treated as a distinct individual with its own Voronoi region for acquiring the

extending resource.

4. Obstacle and homology biased path planner

In this Section, we propose approaches to solve two main problems, which are handling

cluttered environment and online ET processing, using obstacle-biased method and homology-

biased method. Collision detection during the incremental exploration is time consuming, and it

follows a routine procedure to guarantee safety. It should be noted that the step validation of

each new sampling state provides the directional information of obstacle distribution.

4.1. Obstacle biased path planner under kinematic constraints

SBAs mostly deploy the general idea of generating random samples for incremental explora-

tion, and the sample locating in obstacle region will be discarded since it is time consuming

and no benefits for increasing the performance of exploring. We firstly deployed a simple idea

which was proved to have much higher time performance then RRT and RRT* in [17].

This paper introduces an obstacle biased algorithm, using obstacle information to help gener-

ating more samples for connection. It is shown in Figure 4, the newly sampled states xs1, x
s
1 tries

to connect to the nearest state in the tree. However, xs1 leads toward the obstacle region, xs2
locates in obstacle region. To use the obstacle information, this paper proposes an active

exploring method, that is, inner propulsion and outer attraction.

For outer attraction, new sample xs1 performs a collision checking, and find the nearest nodes
o
xa,

o
xb. We define that the further the obstacle to the sample, the more attraction it can support,

that is, the attraction is proportional to the distance between obstacle and the sample using L2-

norm L2. The sample then re-allocation by add a obstacle biased attraction as:

xs∗1 ¼ xs1 þ k oxa � xs1Þ þ
o
xb � xs1Þ

� ��	

(11)

Where k is a constant to adjust the shifting percentage of the attraction vector.

Figure 3. Results of incremental exploration of RRT and hRRT [16] after 200 and 1000 iterations, respectively.
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The inner sample in collision with the obstacle is regarded to provide guiding information for

the algorithm. This paper tries to find two more states g
x1,

g
x2 within kinematic reachable

region (discussed with Eq. (8)), it tries to find out the first two safe state with two directions

which are out of obstacle region in the kinematic reachable region (the light blue fan-shaped

region). Then, the two newly generated samples g
x1,

g
x2 follows principle Eq. (11) to redistrib-

ute to the final position, and connect to the tree.

By using the two proposed approaches, we can generate more useful samples for extending,

especially, the samples generate around the edge of the obstacles with the ability to perform

more active exploration in cluttered environments. Besides, the outer attraction redistributes

the samples toward the narrow corridor between the obstacle, which thus increases the prob-

ability of finding safe path through such obstacle crowed region.

4.2. Homology biased

We assume any path ht(s) generated using SBA is consisted by a set of nodes ht sð Þ ¼ htf

jht s
0ð Þ; s0 ∈ 0; 1½ �g, as it is illustrated in Figure 5(a) that exploring tree is consist of the red nodes.

Each red node is regarded as distinct with other nodes in the tree, with a distinct dominant

region, i.e. Voronoi region. Thus, a path ht(s), which is consisted a set of states from the initial

state to the goal, can be isolated with each other with a distinct region V(bT) combined by all

Voronoi regions of the states.

The region dominant property differs the path with each other, where a SB tree with

multiple paths (the path here may not connect to the goal, but they keep distinct with each

other from the initial position) can be described by a set of branches BT = {bT(1), bT(2),…,

bT(n)}. For each branch, it consists of a list of states which connect with each other to form

tree structure. In the tree, the end state relies on the parent state for extending as well as

trajectory tracking.

Figure 4. Obstacle biased SBA uses the obstacle location as input, with inner propulsion and outer attraction, to generate

more samples for exploration. xs1, x
s
2 are new samples, the black region denotes obstacle region.
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4.2.1. Extending-forbidden algorithm

The path planner performs exploration following the Monte-Carlo approach. Given a configu-

ration space C in a topological space (the rectangle region as illustrated in Figure 5), we denote

the Lebesgue Measurement of the configuration space as L∗
∣C∣. Then we can get the Lebesgue

measurement of each branch bT(i) of the tree using the same metric. Authors in [18] proved that

the dispersion of n random nodes sampled uniformly and independently in V(bT(i)) is,

D ¼ sup
bT ið Þ

ψ bt ið Þ : nð Þ

n
�
L∗ V bT ið Þð Þj j

L∗ Cj j

�

�

�

�

�

�

�

�

¼ o
log nð Þ

n


 �1
d

 !

(12)

Where ψ(bt(i)) denotes the number of samples m, 1 ≤m ≤n, that lies in the sub-branch bT(i), n is

the number of all the sampling, d is the dimension of the configuration space. D denotes the

difference between the ration of sampling probability and ration of space Lebesgue measure-

ment, which follows the knowledge that Monte-Carlo method performs a uniform sampling. It

means the sampling probability approaches the ratio of Lebesgue measurements, that is, the

exploration probability can be represented as:

PbT ið Þ ¼
L∗ V bT ið Þð Þj j

L∗ Cj j
(13)

However, the probability of exploring in the configuration space does not benefit the

extending bias toward the goal. Let us still take a look at Figure 5(a), the branch B2 dominant

Figure 5. The extending-forbidden algorithm (EFA) tries to find all the states along the goal reached branch at each goal

reaching checking step, such as branch B2. Then, EFA sets the flag of the states to be inactive, switching the extending

probability to the nearby branches.
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the near-goal region, and other region are not able to extend toward the goal as the samples

will not connect to the branches if it locates in the near-goal region. To solve this problem, this

paper proposes an Extending-Forbidden Algorithm (EFA), it shifts the source for extending to

other branches by forbidding the goal reached path.

Definition 3—Goal-biased Probability: Given a configuration space C, the exploring tree T

and all its branches which are main branches BT and its corresponding sub-branches. The goal-

biased event denotes a branch can exploring toward the goal. If a goal region can be represented

as Gr, and Voronoi(Gr2BT(i)) is the region that belongs to goal region and the Voronoi region of

branch BT(i). Then, the nominal goal biased probability of branch BT(i) toward Gr is:

P∗
G BT ið Þð Þ ¼

L∗∣voronoi Gr2BT ið Þð Þ∣

L∗∣C∣
(14)

And the real goal biased probability is normalized value of all branches, that is,

PG BT ið Þð Þ ¼
P∗
G BT ið Þð Þ

Pn
j¼1 P

∗
G BT jð Þð Þ

(15)

Definition 4—Long Sub-branch (LSB) and Short Sub-branch (SSB): Given a tree T and all its

Voronoi distinct main branches BT. Then, we can define a length threshold δB. For all end

vertices in each main branch, we calculate the length lsb from end to the goal reach reached

path (any state which firstly reached). If the length lsb > δB, then we call it Long Sub-branch

(LSB). If lsb ≤ δB, we call the sub-branch as Short Sub-branch (SSB).

It should be noted that the threshold is very empirical in Definition 4, and it is decided based

on the configuration space and the kinematic constraints. In Figure 6, we set it as 15 meters,

then we have SSB1, SSB2, SSB3 as SSB, and LSB1 as LSB. The reason why we have this definition

is that we cannot shift all the extending resource to the neighbor branches, and we have the

hypothesis that the SSB must has lower probability of finding a new path even given the

resource for extending. For example, the main Voronoi dominant branches BT keep distinct

with each other, and each main branch has the probability PbT(i)
for exploration in the

Figure 6. An intuitive example of SSB and LSB in an exploring tree, which are generated using threshold principle as

defined in Definition 4.
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configuration space. After the tree stops extending at a certain iteration, we can have the results

as illustrated in Figure 5(a). Since goal region is in Voronoi region of branch B2, then we know

that we have the goal biased probability as PG(B(2)) = 1. One branch B2 reached the goal region

which is represented with dotted back rectangle, EFA searches the SSBs and LSBs based on

Definition 4, and it labels states and executing forbidden. Then, we have a resource shifted

Voronoi graph as illustrated in Figure 5(b), where we can see that branch B1 and B3 obtains the

Voronoi region which belongs to branch B2. The two branches also obtain the rectangle goal

region, that is, their goal biased probabilities are bigger than zero, PG(B(1)) > 0, PG(B(3)) > 0.

Since EFA can shift the goal biased by extending resource to other branches, while not all paths

can obtain such resource. The following truths are hold:

1. The increasing of goal biased probability ensures the generation of a feasible path toward

the goal, but not all branches with goal biased probability can reach the goal at the same

time. Only one can reach the goal because of Voronoi dominant probability, thus the

general SBA cannot find multiple paths.

2. The efficiency of generating multiple paths mainly depends on the environment adapt-

ability of random exploring algorithms. For random exploring algorithm, their merits of

generating multiple branches enable the generation of multiple paths.

4.2.2. Reasonable alternative reference chosen

The proposed MGART is able to perform extending-forbidden toward multiple paths, as the

random exploring property guarantees completeness and diversity. However, the quality of

explored paths cannot be guaranteed, particularly a large number of homotopic paths are

generated. This paper proposes an approach to generate the reasonable path, and we analysis

under the hypothesis that the environment is highly cluttered and it is not practical to set

threshold for path planner to choose the best homological paths.

Definition 5—Reasonable Alternative Paths: Consider two homotopic paths h(π1) and h(π2)

in a configuration space C. The surrounding obstacle information along each path are ℶ h π1ð Þð Þ

and ℶ h π2ð Þð Þ. The reasonable alternative path exists if and only the surrounding information

of the two paths are not the same, such that, ℶ h π1ð Þð Þ 6¼ ℶ h π2ð Þð Þ.

Given the sensing range of a robot as Υ, and the obstacles set O = {o1, o2,…., on}. For path h(π1),

it consists of a set of discrete states X(π1) = {x(π1)1, x(π1)2,…, x(π1)n}. In this paper, we assume

that any obstacle οi can be described with a circle or ellipse centered at oci , then we can build a

Delaunay Triangulation [19] connection (DTc) using the obstacle centers, the initial state, and

the goal state. For DTc, it can generate a network like structure, and each two states have at

most one connection. It is illustrated in Figure 8(a) that the green edges are the valid connec-

tions, with labels to distinct with each other. For any path, if the path intersects with an edge,

the edge information should be added to the information factor, such as the solid red path

intersects with edge L7, then L7∈ℶ h π1ð Þð Þ. The edge labeling method can guarantee the

uniqueness toward homology, while we note that homotopic paths can also be used to perform

emergency threat management. It is represented in Figure 7(b), the solid red path hs and the
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dotted red path hD are homotopic to each other. Given the sensing range Υ, we have the

sensing envelop which are dotted purple lines hL
1 , h

R
1 for hD and solid black lines hL

2 , h
R
2 for hs,

indicating the maximum detection range for emergency threat. Then, we have the o1f g⊂ℶ hDð Þ

and o1; o2; o3; o4f g⊂ℶ hSð Þ, thus we have hs and hD both regarded as reasonable alternative

paths for online threat management.

The informative approach discussed thus can help to label each path in a configuration space,

such as the results listed in Table 1 of paths in Figure 7(a). Then according to Definition 5, we

can find the label of each path. For any several paths which have the same label, we choose the

shortest path and use as the candidate for online fast switching.

4.3. Emergency threat management

The reasonable alternative path set HRAP provides a network with cluttered environment

adaptivity. The concept of visibility was discussed in [20], where the cycle information is used

to enable fast deformation for motion planning. Visibility is defined as:

Path Path surrounding information

Edge information Obstacle

information

Dotted red L2.L3.L6.L7.L8.L19.L31 O5, O2

Solid red L2.L3.L6.L7.L8.L19.L31 O5, O2, O3, O4

Dotted blue L2.L3.L6.L14.L16.L17.L18.L31 O5, O2, O3, O4

Solid blue L2.L3.L6.L14.L16.L20.L23.L24 O5, O2, O3

Dotted pink L2.L10.L11.L22.L27.L29.L30 O6, O7, O8

Solid pink L2.L10.L11.L22.L27.L29.L30 O6, O9, O10, O3

Table 1. The path information parameter is consist of two parts, which are edge information using DTc and obstacle

information using sensing envelop, respectively.

Figure 7. An illustration of surrounding information used to find reasonable alternative path for online emergency threat

management. The information parameter consists of edge information and obstacle surrounding information within

sensing envelop.
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(16)

Where x() denotes a state of a path, Llink is the connection of two states, Cfree is the free space

and Cobs is the obstacle region. A visual illustration is provided in Figure 8(a), where visibility

can only in obstacle free region.

It is noted that the visibility in this paper means a possible connection to switch from one path

to another for emergency threat management. For switching with visibility, given all the

reasonable alternative paths HRAP, the algorithm performs exploration for visibility state at

each UAV state xUAV among HRAP. The algorithm then outputs the visible guards (states) xRAP

as illustrated in Figure 8(b). To avoid the pop-up threat (or dynamic threat), UAV must select

one entry guard from the visible guard set to reconnect to another pre-planned path to the

goal. To validate the best connection, that is, the entry point and the entry connection, this

paper applies the heuristic:

x∗ ¼ argmin
i, j

CFE xUAV ;HRAP ið Þ xRAP jð Þ

� �� �

þ CTC HRAP ið Þ xRAP jð Þ

� �� �

(17)

Using a simple cost based metric, where CFE is the forward energy cost which is the distance

and the turning cost from UAV position xUAV to entry state xRAP(j) and the path from entry

state to the goal HRAP(i)(xRAP(j)). The turning cost is the integration of heading angle difference

at each state, which denotes the smoothness of the planned path. CTC is the threat cost, the

integration of inverse distance between state and obstacles. Using such approach, the algo-

rithm can find five visible states xRAP= {xRAP(1),…, xRAP(5)} as illustrated in Figure 8(b). Then,

it tries to find the best entry state using the minimum cost principle (Eq. (17)).

Figure 8. For online switching, UAV should follow the visible-node selection algorithm (a) to explore the possible

switching route, then it switches to the cost minimum path for ETM (b).
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We further consider a situation that there may have no visible states at current location. The

paper proposes to use a long-term memory approach to handle this problem, that is, the travel

path should be stored in memory, such as the orange edges and states illustrated in Figure 8(b).

In the meanwhile, the method stores the visible state along the traveled path. Then, the UAV has

to fly back to find a cost minimum path toward the goal if it confronts with pop-threat and has

no visible states.

5. Experiment and discussion

In this section, we highlight the performance of the obstacle biased and homology biased path

planner with the ability of emergency threat management (avoiding pop-up and dynamic

threat online). In the section, we will discuss the following points: (1) How the threshold of

EFA affects the performance of MGART. (2) The time performance and reliability of reasonable

alternative chosen algorithm. (3) The online emergency threat management performance. The

algorithm is implemented using MatLab 2016b on a laptop computer with a 2.6 GHz Intel

Core I5 processor.

5.1. Comparative simulation of multiple path exploration

We design three different scenarios, which are non-obstacle scenario, rounded obstacle crowed

scenario, and irregular polygons crowed scenario, to perform comparative simulations. All the

scenarios are 2D with 100∗65 m2 space, and obstacles randomly generated.

For scenario 1, it is a non-obstacle environment, and we set the variable threshold as a set with

value {3, 5, 7, 8, 11,13,15,18,20,25,28} for representation. As we know the length of EFA threshold

affects the goal biased probability, which directly decide the area of the newly obtained Voronoi

region of the neighbor branches, we design a set of comparative experiments to study the effects

between EF length and RAPs. An intuitive result of the relationship between planned paths and

EF length after 10,000 iterations are provided in Figure 9(a)–(d). MGART can find 37 paths after

10,000 iterations if EF length is set as 3 step-length, and the number decreases to 22 if the EF

length is set as 28. The reason is that the longer the EF length, the further the neighbor branches

can obtain the goal biased resource. Thus, the neighbor branches need more steps to exploring

toward the goal, that is, less paths will be achievedwith better homology performance. Aswe can

see that the paths in Figure 9(d) have a better homology performance than Figure 9(a). The

same EF length variation experiment is also deployed in scenario 2, and results are shown in

Figure 9(e)–(h). For RAPs, it is the same with the results in scene 1 that RAPs decrease with the

increasing of the EF length. However, as the increasing of EF length enables more branches to

explore toward the goal as well as increasing the homologous paths (see in Figure 9(e)–(h)), the

number of the RAPs increasing with the increasing of the EF length. The statistic relation between

the RAPs and the EF length is illustrated in Figure 10, which further proves the conclusion.

The EFA can be used to any SBAs by shifting the goal biased resource to achieve multiple RAPs

for online switching. This paper compares the performance between MGART and MRRT* in

three scenarios with 10,000 iterations. We compare the efficiency of generating a path, RAPs,
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average time for finding a path, and average time for any RAP are compared in Table 2. GART

has a better performance in both path exploration and RAP generation, such that MGART can

find at least 3 times of the number of paths toward the goal than MRRT*. Because GART

introduces the environmental information to speed up the exploring process, the results prove

Figure 9. Illustration of alternative paths generated by MGART vary with representative backward EF length. (a)–(d)

denotes the results in non-obstacles scenario, (e)–(h) denotes the results in obstacle crowed.

Figure 10. Relation between EF backward length and APs and RAPs with two scenarios. Here the solid diamond line

denotes the relation of scene 1, and the triangle lines denotes the results of scene 2.
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thatMGART ismore efficient in finding RAPs, which is almost 100% faster thanMRRT*. For time

performance, we can see that MGARTalso outperformsMRRT* with at least 3 times advantage.

Besides comparison of the time performance of finding online switching paths (that is RAPs),

we also pay attention to the quality of the path generated. The average lengths and standard

deviation of the length of all paths in each scene are illustrated in Figure 11. The average length

of the paths that generated by MGART and MRRT* are illustrated in Figure 11(a), we can see

that MGART has a strong convergence performance than MRRT*. The standard deviation of

the lengths is shown in Figure 11(b), results demonstrate that MGART is more likely to find

paths with smaller fluctuation as well as smaller cost.

5.2. Performance of reasonable alternative path chosen

We also test the path labeling algorithm, that is, the surrounding information pursuing using

DTc and sensing envelop, which is used to obtain the reasonable alternative paths under

Definition 5. It is should be noted that the under the definition, any two paths do not have the

same information parameter, which enables fast switching when facing pop-up threat. As the

path label method guarantees the unique labeling of all the paths, only the paths which stretch

in a parallel way and within the same sensing envelop have the same labels.

The results of simulation after 10,000 iterations in scenario 2 and 3 are provided in Table 3. For

each single path, the time needed for labeling the path mainly depends on the area, dimension,

Scenario Algorithm Paths after

10,000 iterations

RAPs after

10,000 iterations

Average time for

a feasible path

Average time

for a RAP

Scenario 1 MGART 48 / 2.081 /

MMRRT* 12 / 7.825 /

Scenario 2 MGART 43 9 2.093 8.213

MRRT* 11 5 7.169 15.772

Scenario 3 MGART 34 10 2.257 7.674

MRRT* 11 5 6.789 14.935

Table 2. Detailed comparison of planning efficiency between MH-GART and MH-RRT* in all three scenarios.

Figure 11. Comparison of (a) average length and (b) standard deviation of the APs generated by MGARTand M-RRT* in

three scenarios.
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the complexity of the configuration space. For our tested with area 100∗60, the average time for

acquiring the information for labeling 0.078 s (see in Table 3). The average time needs for RAP

pursing of our cases is 0.139 s.

5.3. Experiments of emergency threat management

MGART can be used for 3D and 2D pop-up threat management, and the 3D environments can

be easily segmented by DT. We evaluate the performance of our method in both 2D and 3D

environments, and we also compared the time performance.

For 2D environments, we implement three tests with different number of dynamic threats. The

RAP chosen algorithm works when robot realizes that the path will collide with the pop-up

threat, that is, robot at position xUAV detects the moving threat (see in Figure 12(a)). The

simulation setting is illustrated in Table 4, where the robot speed is 10m/s and the moving threat

can be detected within 10 m detection range. Thus, the robot has less than 1 s to re-plan a path

and executing to avoid the obstacle. RAP chosen algorithm first evaluates all its neighbor RAPs

(the green lines) around the robot, and chooses the cost minimal and collision free path based on

principle Eq. (17) (the dotted green path in Figure 12(b)). It is noted that Figure 12(b)–(d) are

results of using MGART to avoid one, two, and three moving threats, respectively. The black

parts along the navigation path denote the position where threat is detected by robot. We also

execute test in 3D environment (see in Figure 13) with pup-up and moving threats. The on-line

switching is supposed to be used for aerial robots in 3D, thus Dublin’s Curves is used when

switching from current position to safe path.

For all the experiments, we study the time efficiency of each switching to escape from current

dangerous situation. For one moving threat avoiding (see in Figure 12(b)), the time needed to

switch to other RAP is 0.0507 s, and the whole navigation duration is 13.14 s with 10 m/s

Scenario 2 Scenario 3

Time for labeling (s) Time for RAPs (s) Time for labeling (s) Time for RAPs (s)

0.0721 0.146 0.0842 0.132

Table 3. Time performance of proposed method in two scenarios.

Figure 12. Tests of on-line switching to avoid dynamic threats using MGART in 2D scenarios. (a) Robot detects moving

threat at position xUAV, then it evaluates all its visible neighbor RAPs (the green lines) to choose the switching path. (b)

Complete navigation of avoiding one moving threat, the red path is the navigation path. (c) Test of avoiding two moving

threats, the black and red circles are threats. (d) Tests of avoiding three moving threats.
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speed. For two dynamic threats avoiding case (see in Figure 12(c)), the whole navigation time

is 13.32 s, and the time spend to avoid the second threat is 0.0912 s. In scene 3, we designed a

long duration for threat (see in Figure 12(d)). The two cyan threats disable the blue-path, thus

robot has to switch for more times while tracking the dark path. The average time is no more

than 0.15 s which can be decreased when implemented in robot’s platform with C++ imple-

mentation, and the whole navigation time is 13.5 s.

6. Conclusion

The main contribution of this paper is that an online EMT planner is proposed, where pop-up

threat and moving obstacle happen during tracking the pre-planned path. We propose a new

multiple path planning approach called MGART, which is improved based on GART, by

introducing an ‘Extending Forbidden’ algorithm to shift the goal biased probability to neigh-

bor branches around goal reached branch. The algorithm is shown to inherit the merits of

Figure 13. The experiment of using MGAT for 3D emergency threat management case, where pop-up threat and moving

threat are exist in the environment.

Robot speed 10 m/s

Detection range 10 m

Speed of cyan obstacle (in Figure 12(b)–(c)) 1.4 m/s

Speed of red obstacles (in Figure 12(c)–(d)) 0.8 m/s

Speed of cyan obstacle (in Figure 12(d)) 0.8 m/s

Online switching range 20 m

Table 4. Setting of simulation for ETM.
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GART and the ability of exploring in cluttered environments, and it guarantees asymptotically

optimal and completeness. It is also shown that the algorithm can generate multiple paths

without using variant cost principles, but only relying on the EFA threshold, thus it enables

selection for online dynamical switching.

In the future, we would like to research on online visual positioning and environment percep-

tion topic, which is lack of discussion in this paper. We would like to enable cognitive sensing

and autonomous for robots.
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