398 research outputs found

    Si-based anode materials for lithium rechargeable batteries

    Get PDF
    Silicon is a very promising candidate to replace graphite as the anode in Li-ion batteries because of its very high theoretical capacity, relatively low cost and low toxicity. However, it has not yet made its way into commercial cells. This review highlights recent progress on Si-based anode materials for lithium rechargeable batteries

    NiCo2O4/C Nanocomposite as a highly reversible anode material for lithium-ion batteries

    Get PDF
    A NiCo2O4/C nanocomposite has been synthesized by a hydrothermal method followed by a calcination. X-ray powder diffraction and transmission electron microscopy measurements demonstrated the composite was composed of crystalline NiCo2O4 and amorphous carbon, and NiCo2O4 and carbon particles amalgamated together with good affinity. The electrochemical results showed as high as 914.5 mAh/g reversible capacity could be achieved at 40 mA/g current density in the potential range of 0.01-3.0 V. The initial coulombic efficiency of the composite was 79.2%, and the capacity retention was 78.3% up to 50 cycles. The superior electrochemical performance indicated that the NiCo2O4/C nanocomposite might be a promising alternative to conventional graphite-based anode materials for lithium-ion batteries

    Recent Advances in 3D Graphene Architectures and Their Composites for Energy Storage Applications

    Get PDF
    Graphene is widely applied as an electrode material in energy storage fields. However, the strong π-π interaction between graphene layers and the stacking issues lead to a great loss of electrochemically active surface area, damaging the performance of graphene electrodes. Developing 3D graphene architectures that are constructed of graphene sheet subunits is an effective strategy to solve this problem. The graphene architectures can be directly utilized as binder-free electrodes for energy storage devices. Furthermore, they can be used as a matrix to support active materials and further improve their electrochemical performance. Here, recent advances in synthesizing 3D graphene architectures and their composites as well as their application in different energy storage devices, including various battery systems and supercapacitors are reviewed. In addition, their challenges for application at the current stage are discussed and future development prospects are indicated

    Stabilization of NaZn(BH4)3 via nanoconfinement in SBA-15 towards enhanced hydrogen release

    Get PDF
    In the present work, the decomposition behaviour of NaZn(BH4)3 nanoconfined in mesoporous SBA-15 has been investigated in detail and compared to bulk NaZn(BH4)3 that was ball milled with SBA-15, but not nanoconfined. The successful incorporation of nanoconfined NaZn(BH4)3 into mesopores of SBA-15 was confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, 11B nuclear magnetic resonance, nitrogen absorption/desorption isotherms, and Fourier transform infrared spectroscopy measurements. It is demonstrated that the dehydrogenation of the space-confined NaZn(BH4)3 is free of emission of boric by-products, and significantly improved hydrogen release kinetics is also achieved, with pure hydrogen release at temperatures ranging from 50 to 150 °C. By the Arrhenius method, the activation energy for the modified NaZn(BH4)3 was calculated to be only 38.9 kJ mol−1, a reduction of 5.3 kJ mol−1 compared to that of bulk NaZn(BH4)3. This work indicates that nanoconfinement within a mesoporous scaffold is a promising approach towards stabilizing unstable metal borohydrides to achieve hydrogen release with high purity

    Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries

    Get PDF
    A free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator were designed for flexible Li-S batteries. The free-standing sulfur-polypyrrole cathode was prepared by directly pasting a sulfur-coated polypyrrole (S@PPy) nanofiber composite on a flexible and conductive polypyrrole (PPy) film. Compared with carbonaceous matrixes, PPy has a strong interaction with polysulfides to mitigate the dissolution of polysulfides due to its unique chain structure and the lone pair electrons in the nitrogen atoms in PPy. In addition, the as-prepared PPy film not only shows excellent mechanical elasticity, but also possesses a rough surface, which can accommodate volume expansion, enhance the adhesion of active materials, and further trap the dissolved polysulfides. Due to the synergistic effect provided by the PPy film, the free-standing sulfur-polypyrrole cathode shows better electrochemical performance than the traditional cathode with S@PPy composite coated on Al foil. In order to further improve the cycling stability of Li-S batteries, a PPy coated separator was prepared, which acts as a fishing net to capture polysulfides and alleviate the shuttle effect, leading to a stable cycling performance. Moreover, the PPy layer coated on commercial separator is much lighter than many other free-standing interlayers reported previously. Considering the flexibility of the free-standing sulfur cathode and PPy coated separator, a soft-packaged flexible Li-S battery based on them has been designed and fabricated to power a device consisting of 24 light emitting diode (LED) lights. After repeated bending, the flexible Li-S battery can still maintain good performance, indicating the excellent mechanical flexibility of the designed Li-S battery

    Stabilization of NaZn(BH4)3 via nanoconfinement in SBA-15 towards enhanced hydrogen release

    Get PDF
    In the present work, the decomposition behaviour of NaZn(BH4)3 nanoconfined in mesoporous SBA-15 has been investigated in detail and compared to bulk NaZn(BH4)3 that was ball milled with SBA-15, but not nanoconfined. The successful incorporation of nanoconfined NaZn(BH4)3 into mesopores of SBA-15 was confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, 11B nuclear magnetic resonance, nitrogen absorption/desorption isotherms, and Fourier transform infrared spectroscopy measurements. It is demonstrated that the dehydrogenation of the space-confined NaZn(BH4)3 is free of emission of boric by-products, and significantly improved hydrogen release kinetics is also achieved, with pure hydrogen release at temperatures ranging from 50 to 150 °C. By the Arrhenius method, the activation energy for the modified NaZn(BH4)3 was calculated to be only 38.9 kJ mol−1, a reduction of 5.3 kJ mol−1 compared to that of bulk NaZn(BH4)3. This work indicates that nanoconfinement within a mesoporous scaffold is a promising approach towards stabilizing unstable metal borohydrides to achieve hydrogen release with high purity

    General synthesis of transition metal oxide ultrafine nanoparticles embedded in hierarchically porous carbon nanofibers as advanced electrodes for lithium storage

    Get PDF
    A unique general, large-scale, simple, and cost-effective strategy, i.e., foaming-assisted electrospinning, for fabricating various transition metal oxides into ultrafine nanoparticles (TMOs UNPs) that are uniformly embedded in hierarchically porous carbon nanofibers (HPCNFs) has been developed. Taking advantage of the strong repulsive forces of metal azides as the pore generator during carbonization, the formation of uniform TMOs UNPs with homogeneous distribution and HPCNFs is simultaneously implemented. The combination of uniform ultrasmall TMOs UNPs with homogeneous distribution and hierarchically porous carbon nanofibers with interconnected nanostructure can effectively avoid the aggregation, dissolution, and pulverization of TMOs, promote the rapid 3D transport of both Li ions and electrons throughout the whole electrode, and enhance the electrical conductivity and structural integrity of the electrode. As a result, when evaluated as binder-free anode materials in Li-ion batteries, they displayed extraordinary electrochemical properties with outstanding reversible capacity, excellent capacity retention, high Coulombic efficiency, good rate capability, and superior cycling performance at high rates. More importantly, the present work opens up a wide horizon for the fabrication of a wide range of ultrasmall metal/metal oxides distributed in 1D porous carbon structures, leading to advanced performance and enabling their great potential for promising large-scale applications

    Strong affinity of polysulfide intermediates to multi-functional binder for practical application in lithium-sulfur batteries

    Get PDF
    Binder, one of the most important battery components, plays a critical role in lithium-sulfur batteries. Poly(vinylidene difluoride) (PVDF), a commonly used binder in lithium-sulfur batteries, does not have a strong affinity to the intermediate polysulfides, however, leading to fast capacity fading with electrochemical cycling. Herein, copolymers of vinylidene difluoride with other monomers are used as multi-functional binders to enhance the electrochemical performance of lithium-sulfur batteries. Compared to the PVDF, the copolymer, poly(vinylidene difluoride-trifluoroethylene) (P(VDF-TRFE)) binder exhibits higher adhesion strength, less porosity, and stronger chemical interaction with polysulfides, which helps to keep the polysulfides within the cathode region, thereby improving the electrochemical performance of the lithium-sulfur battery. As a result, sulfur electrode with P(VDF-TRFE) binder delivered a high capacity of 801 mA h g-1 at 0.2 C after 100 cycles, which is nearly 80% higher capacity than the corresponding sulfur cathode with PVDF binder

    A new energy storage system: Rechargeable potassium-selenium battery

    Get PDF
    A new reversible and high-performance potassium-selenium (K-Se) battery, using confined selenium/carbonized-polyacrylonitrile (PAN) composite (c-PAN-Se) as cathode and metallic potassium as anode, is reported in this work. The PAN-derived carbon matrix could effectively confine the small Se molecules and provide a sufficient buffer for the volume changes. The reversible formation of small-molecule trigonal Se (Se1, P3121) phase could essentially inhibit the formation of polyselenides and account for outstanding electrochemical performance. The carbonate-based electrolyte further synergistically diminishes the shuttle effect by inhibiting the formation of polyselenides in the meantime. The as-prepared K-Se battery shows a reversible capacity of 1904 mAh cm¿3after 100 cycles at 0.2 C and rate retention of 89% from 0.1 to 2 C. In addition, the charge-discharge mechanism is also investigated via the combination of in-situ and ex-situ synchrotron X-ray diffraction (XRD), and Raman spectroscopy analysis. The results reveal that the introduction of K+ions leads to the cleavage of C-Se bonds, the rearrangement of selenium atoms, and the final formation of the main product K2Se. Moreover, the reversible formation of trigonal Se (Se1, P3121) phase was detected in the reaction with K+. These findings not only can advance our understanding of this family of batteries, but also provide insight into chemically-bonded selenium composite electrodes, which could give guidance for scientific research and the optimization of Se and S electrodes for the K-S, Na-S, Li-S, Na-Se, and Li-Se batteries

    Monte Carlo Linear Clustering with Single-Point Supervision is Enough for Infrared Small Target Detection

    Full text link
    Single-frame infrared small target (SIRST) detection aims at separating small targets from clutter backgrounds on infrared images. Recently, deep learning based methods have achieved promising performance on SIRST detection, but at the cost of a large amount of training data with expensive pixel-level annotations. To reduce the annotation burden, we propose the first method to achieve SIRST detection with single-point supervision. The core idea of this work is to recover the per-pixel mask of each target from the given single point label by using clustering approaches, which looks simple but is indeed challenging since targets are always insalient and accompanied with background clutters. To handle this issue, we introduce randomness to the clustering process by adding noise to the input images, and then obtain much more reliable pseudo masks by averaging the clustered results. Thanks to this "Monte Carlo" clustering approach, our method can accurately recover pseudo masks and thus turn arbitrary fully supervised SIRST detection networks into weakly supervised ones with only single point annotation. Experiments on four datasets demonstrate that our method can be applied to existing SIRST detection networks to achieve comparable performance with their fully supervised counterparts, which reveals that single-point supervision is strong enough for SIRST detection. Our code will be available at: https://github.com/YeRen123455/SIRST-Single-Point-Supervision
    • …
    corecore