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Abstract: Binder, one of the most important battery components, plays a critical role in 

lithium-sulfur batteries. Poly(vinylidene difluoride) (PVDF), a commonly used binder in 

lithium-sulfur batteries, does not have a strong affinity to the intermediate polysulfides, 

however, leading to fast capacity fading with electrochemical cycling. Herein, copolymers of 

vinylidene difluoride with other monomers are used as multi-functional binders to enhance 

the electrochemical performance of lithium-sulfur batteries. Compared to the PVDF, the 

copolymer, poly(vinylidene difluoride-trifluoroethylene) (P(VDF-TRFE)) binder exhibits 

higher adhesion strength, less porosity, and stronger chemical interaction with polysulfides, 

which helps to keep the polysulfides within the cathode region, thereby improving the 

electrochemical performance of the lithium-sulfur battery. As a result, sulfur electrode with 

P(VDF-TRFE) binder delivered a high capacity of 801 mAh g
-1

 at 0.2 C after 100 cycles, 

which is nearly 80% higher capacity than the corresponding sulfur cathode with PVDF binder.  

KEYWORDS: lithium-sulfur batteries; copolymer binder; chemical affinity; polysulfide 

intermediates; density functional theory (DFT) calculations 
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Introduction 

Lithium-sulfur (Li-S) battery is believed to be one the most promising candidates among the 

proposed rechargeable battery systems because of its high theoretical specific capacity (1675 

mAh g
-1

), inexpensive cost, and environmentally friendliness [1-5]. Nevertheless, the sulfur 

cathodes face several persistent problems, such as the poor conductivity of sulfur, high 

solubility of polysulfides in the electrolyte, and large volume changes during the cycling 

process. These result in low sulfur utilization, low coulombic efficiencies, and rapid capacity 

fading of Li-S batteries [6-12]. Many strategies have been applied to Li-S batteries to address 

these scientific issues in the past few years, mainly focusing on the construction of 

nanostructured sulfur cathode [13-18] and functionalization of the separator [19-24]. 

Although these strategies could greatly enhanced the performance of Li-S batteries, the 

complicated synthesis procedures and the high cost of these matrix materials make them 

difficult to use in practical applications.  

To date, there has been little research focus on industrially viable solutions to the problems of 

Li-S batteries. The binder, as one of the most important battery components, plays an 

important role in the electrode fabrication process, and it also has a strong influence on the 

electrochemical performance of Li-S batteries. Therefore, if the most serious problems of 

these batteries could be addressed through the choice of a suitable binder, the electrode 

preparation process and the whole battery set-up could still be kept simple, which would 

greatly promote the practical application of Li-S batteries. A suitable binder in the Li-S 

system should have strong adhesion to ensure good contact between the sulfur-based 

nanomaterial and the conductive carbon and current collector, as well as good mechanical 

stability against volumetric expansion of sulfur, and it also could help to control polysulfide 

dissolution and diffusion.  



Poly(vinylidene difluoride) (PVDF) is a semicrystalline polymer known for its polymorphism 

that is also widely used as a binder in Li-S batteries. Although it has relatively strong 

adhesion and can link the sulfur-based active material to the current collector, its affinity to 

polysulfide is weak, resulting in poor cycling stability. Compared to PVDF homopolymer, 

copolymers of vinylidene difluoride (VDF) with different monomers have different properties 

in terms of adhesive strength, porosity, and polarity [25, 26], which are important factors that 

influence the electrochemical performance of Li-S batteries. Recently, it was reported that 

polar materials, such as TiO2, Ti4O7, and MnO2, are thought to bind with lithium polysulfides 

in form of chemical bonds that would keep them within the cathode region, thus improving 

the cycling stability of Li-S batteries [27-31]. Inspired by this, herein, we have used 

copolymers of VDF with other monomers as binders to improve the electrochemical 

performance of Li-S batteries. Compared to the PVDF homopolymer, our copolymers 

demonstrate higher adhesion strength, enhanced conductivity, less porosity, higher polarity, 

and strong affinity with polysulfides, which contribute to the good performance of Li-S 

batteries.  

Experimental Section 

Preparation of ordered mesoporous carbon 

An ordered mesoporous carbon was prepared through the method reported by Zhao et al [32]. 

Then, the silica was removed by putting the mesoporous carbon-silica composite into 2 M 

NaOH solution (100 
o
C) for 2 h. 

Fabrication of sulfur cathodes 

The sulfur (70 wt%) and as-prepared mesoporous carbon (30 %) were mixed and then heated 

to 160 °C in a sealed tube for 20 h. The carbon-sulfur composite (70% by weight) was mixed 

with Super-P (10%) and binder (PVDF from Solvay, poly(vinylidene difluoride-

trifluoroethylene) [P(VDF-TRFE)] and poly(vinylidene difluoride-co-chlorotrifluoroethylene) 



[(P(VDF-co-CTFE)] from Piezotech) (20%) in N-methyl-2-pyrrolidone (NMP), respectively, 

to form the slurry. After that, the slurry was coated on aluminum foil to prepare sulfur 

electrodes and then dried at 50 
o
C for 24 h. 

Characterization 

The sulfur content in the composite was measured by a thermogravimetric analysis (TGA, 

METTLER TOLEDO, Switzerland) instrument from room temperature to 500 C at a heating 

rate of 10 C per min in argon atmosphere. The morphologies and compositions of the 

samples were investigated by a scanning electron microscope (SEM; JEOL JSM-7500FA) 

equipped with energy-dispersive X-ray (EDX) spectroscopy, and a transmission electron 

microscope (TEM; JEOL 2011). The adhesive strength of the polymeric binder with respect 

to the aluminum foil was evaluated using universal testing machine from Tensile & 

Compression Testers (INSTRON 5943). The aluminum strips were cleaned with ethanol, and 

then the binder solutions were spread on the strips, with a coated area 1 cm in length, 1 cm in 

width, and 0.2 mm in thickness. Subsequently, two coated areas were overlapped and bonded 

together. The strips were dried under vacuum at 50 
o
C for 24 h before measurements.  

Electrochemical measurements 

The CR2032 coin cells were assembled in a glovebox filled with argon. The electrolyte was 1 

M LiTFSI in a mixture of 1,3-dioxolane (DOL) and dimethoxyethane (DME) (1:1 by volume) 

containing LiNO3 (2 wt%). The electrochemical performance of the coin cells was tested 

within a voltage window of 1.8-2.6 V using a LAND CT2001A battery test system.   

Results and discussion   

Figure 1a shows the molecular structure of PVDF and its copolymers with other monomers. 

PVDF has two fluorine atoms in the monomer unit, while the monomer of P(VDF-TRFE) has 

five fluorine atoms and one hydrogen. In the case of the P(VDF-co-CTFE), the hydrogen in 

the trifluorethylene is replaced by a chloride atom. The modification observed in the 



monomer unit enhances the molecular polarity of the VDF based copolymers. Polar materials 

are thought to have a strong affinity to lithium polysulfides, effectively keeping them within 

the cathode region and thus improving the electrochemical stability of the Li-S battery [27, 

30]. Therefore, we have used ab initio simulations performed in the framework of density 

functional theory to clearly confirm the interaction between Li2S and the polymer binders 

(Figure 1b). The strongest interaction with Li2S can be observed in the case where it bonds 

with the –F group in P(VDF-TRFE) binder, with binding energy of 1.05 eV and bond length 

of 1.972 Å. In contrast, lower binding energy of 0.78 eV was found in the case where Li2S 

bonds with the –F group in the conventional PVDF binder. Furthermore, P(VDF-TRFE) 

binder exhibits a high binding energy of 0.876 eV with Li−S· species (referring to the 

relevant end groups in the general class of lithium polysulfides, Li-S-Sn-2-S-Li; Li2Sn for short, 

4≤n≤8) [33], as shown in Figure 1c, which is higher than the binding energy (0.75 eV) 

between lithium polysulfides and PVDF binder. The ab initio simulation results demonstrate 

that the −F group in the P(VDF-TRFE) binder possesses a stronger affinity to Li2S and 

lithium polysulfides than it does in the PVDF binder, which will play a critical role in terms 

of maintaining stable electrochemical performance.  

The sulfur cathodes were prepared by using mesoporous carbon-sulfur composite (Supporting 

Information Figures S1 and S2) as the active material, Super P as conductive additive, and 

PVDF and its copolymers (P(VDF-co-CTFE) and P(VDF-TRFE)) as binders (with the 

resultant electrodes denoted as S@PVDF, S@P(VDF-co-CTFE), and S@P(VDF-TRFE)). 

The cycling performances of the S@PVDF, S@P(VDF-co-CTFE), and S@P(VDF-TRFE) 

electrodes tested at current density of 0.2 C are shown in Figure 2a. The S@P(VDF-co-

CTFE) and S@P(VDF-TRFE) electrodes delivered more stable capacity during cycling than 

the S@PVDF electrode. After 100 cycles, high reversible discharge capacities of 650 and 801 

mAh g
-1

 were obtained for the S@P(VDF-co-CTFE) and S@P(VDF-TRFE) electrodes, 



respectively. In contrast, it was observed that the discharge capacity of the S@PVDF 

electrode decreased quickly to 450 mAh g
-1

. The copolymer binders demonstrated better 

capacity retention than the homopolymer PVDF one. Furthermore, the S@P(VDF-TRFE) 

electrode delivered higher initial discharge capacity and coulombic efficiency (Figure S3) 

compared to the S@PVDF electrode, demonstrating enhanced sulfur utilization. The 

discharge curves of the S@PVDF, S@P(VDF-co-CTFE), and S@P(VDF-TRFE) electrodes 

for selected cycles are shown in Figure 2b-d, in which two typical plateaus representing the 

sulfur cathode at around 2.1 and 2.3 V can be observed from the discharge curves. It was 

reported that the higher discharge plateau at 2.3 V is attributed to the formation of soluble 

high-order polysulfides [21]. After 100 cycles, the retention rate of the upper plateau 

discharge capacity is 72.9% and 56.1% for the S@P(VDF-TRFE) and S@P(VDF-co-CTFE) 

electrodes, respectively, while only 41.8% is retained for the S@PVDF electrode (Figure S4). 

Therefore, the high retention rate of the upper plateau discharge capacity indicates that the 

P(VDF-TRFE) binder has strong polysulfide-trapping capability, which can keep the 

polysulfides within the cathode region due to its higher affinity with them, resulting in good 

cycling stability.  

Figure 2e displays the rate performances of the S@PVDF, S@P(VDF-co-CTFE), and 

S@P(VDF-TRFE) electrodes. Even at current density of 5 C, a satisfactory capacity of nearly 

450 mAh g
-1

 can be obtained for the S@P(VDF-TRFE) electrode, which is much higher than 

that of the S@PVDF, confirming the excellent rate capability due to the strong interaction 

between the P(VDF-TRFE) binder and the polysulfides, and the improved reaction kinetics. It 

is notable that the S@P(VDF-TRFE) and S@P(VDF-co-CTFE) electrodes show lower 

resistance and higher lithium ion conductivity, as confirmed by the diffusion coefficients 

(4.03 × 10
-11

 cm
2
 s

-1
, 2.29 × 10

-10
 cm

2
 s

-1
, and 

 
3.90 × 10

-10
 cm

2
 s

-1
 for the S@PVDF, 

S@P(VDF-co-CTFE), and S@P(VDF-TRFE) electrodes, respectively) (Figure S5), which 



also contributes to the rate capability. The long-term cycling performances of sulfur 

electrodes with the different binders at 0.5 C are presented in Figure 2f. After 300 cycles, the 

S@P(VDF-TRFE) electrode can still deliver 540 mAh g
-1

, corresponding to 59.2
 
% capacity 

retention of its initial capacity and a small capacity fading of only 0.136
 
% per cycle. The 

S@PVDF electrode, however, only delivers capacity of 180 mAh g
-1

. Here, we believe that 

the enhanced electrochemical properties should be attributed to the lower porosity, higher 

conductivity, and stronger polysulfide-trapping capability of P(VDF-TRFE) binder, which 

can keep polysulfides within the cathode region. It was reported that when PVDF 

crystallization from a solvent solution occurs at temperatures below 60 ºC, all of the material 

crystallizes in the polar trans planar “zigzag” -phase, but it also presents higher porosity 

[34,35], which not only affects the mechanical properties of the electrode, but also the overall 

conductivity of the electrode. In contrast, when P(VDF-TRFE) copolymer crystallizes from a 

solvent solution at 50ºC, it was reported that an homogeneous and non-porous film is 

obtained [36], leading to good mechanical performance. Moreover, the lack of porosity 

demonstrated by P(VDF-TRFE) probably lead to enhanced wrapping of the sulfur and active 

carbon particles, improving the adhesion and surface contact between the metal contact and 

the active materials, which increases the overall conductivity of the electrode. 

The adhesive property of the binders was therefore investigated. The lap shear strength 

curves of the PVDF, P(VDF-co-CTFE), and P(VDF-TRFE) binders are presented in Figure 

S6. The adhesion strength of the P(VDF-co-CTFE) and P(VDF-TRFE) binders is higher than 

that of the PVDF binder, which can help to buffer the volume changes during the cycling 

process, preventing active material exfoliation and maintaining the integrity of the electrode, 

especially under the conditions of long-term cycling. In order to prove the strong chemical 

interaction between the P(VDF-TRFE) binder and the polysulfides, the cycled S@PVDF and 

S@P(VDF-TRFE) electrodes were examined by ultraviolet-visible (UV-vis) absorption 



spectroscopy (Figure 3a,b). For the S@PVDF electrode, the large boost in the peak around 

280 nm referring to S8
2-

/S6
2-

 species demonstrates that significant amounts of polysulfides 

have detached from the sulfur cathode and dissolved into the electrolyte [37-38]. In contrast, 

the similar intensities of the peaks for the S@P(VDF-TRFE) electrodes at different cycles 

indicate that there is a similar content of polysulfides in the electrolyte, proving the effective 

chemical interaction between P(VDF-TRFE) binder and polysulfides, i.e. the strong affinity 

of polysulfides to P(VDF-TRFE) binder helps to trap polysulfides within the sulfur cathode. 

In addition, photographs of separators after 100 cycles are displayed in Figure S7. The yellow 

color on the separator corresponding to the S@PVDF electrode indicates that the polysulfides 

were diffusing from the cathode and some active materials had exfoliated from the electrode 

and been stuck on the separator. The color on the separators corresponding to the S@P(VDF-

co-CTFE), and S@P(VDF-TRFE) electrodes is light yellow, without any active materials 

stuck on the separator, supporting the viewpoint discussed above: that there is strong 

cohesiveness and chemical interaction between the polysulfides and the P(VDF-TRFE) 

binder. 

The cycled electrodes were further investigated by SEM and EDX spectroscopy (Figure 3c-

h). Before cycling, there were no differences between the sulfur electrodes with different 

binders, and active sulfur composite and Super P carbon can be clearly observed in each 

electrode. Large particle aggregation can be clearly observed, however, in the S@PVDF 

electrode after 50 cycles, and the EDX results revealed that the aggregated particles were rich 

in sulfur (Figure 3i, j and Table S1). Due to the poor chemical interaction between the 

polysulfides and the PVDF, a certain amount of sulfur could escape from the carbon matrix 

and aggregate on the surface of the electrode during the charge-discharge process. It has been 

reported that aggregation is a typical phenomenon, leading to serious disconnection between 

the sulfur active material and the conductive carbon, thus degrading the performance of the 



sulfur cathode [39]. No obvious changes can be observed in the S@P(VDF-co-CTFE) and 

S@P(VDF-TRFE) electrodes, however, and the overall morphology and structure were well 

preserved, demonstrating that the P(VDF-co-CTFE) and P(VDF-TRFE) binders have strong 

chemical interactions with polysulfides, trapping them within the cathode region and 

preventing the sulfur from aggregating during the cycling process, leading to the enhanced 

electrochemical performance of these sulfur electrodes. 

Conclusions 

In summary, copolymers of VDF with other monomers are introduced as novel binders to be 

used in sulfur electrodes for lithium-sulfur batteries. The P(VDF-TRFE) binder not only 

possesses a higher adhesive mechanical strength compared to the normal PVDF binder, but 

also demonstrates strong chemical interaction with polysulfides due to its high molecular 

polarity, as demonstrated in ab initio simulations, thus acting as an inhibitor to restrain the 

dissolution and diffusion of the polysulfides. The resulting S@P(VDF-TRFE) electrode 

delivers capacity of 801 mAh g
-1

 at 0.2 C after 100 cycles, while the corresponding electrode 

with PVDF only retains a capacity of 450 mAh g
-1

. 
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Figure 1. (a) Chemical structures of PVDF, P(VDF-TRFE), and P(VDF-co-CTFE) binders; 

ab initio simulations showing the most stable binding configurations of (b) Li2S and (c) 

Li−S· species with PVDF (left) and P(VDF-TRFE) (right) binders.  

 

 

 

 

 



 

Figure 2. (a) Cycling stability of sulfur electrodes with different binders at current density of 

0.2 C; galvanostatic charge-discharge profiles for selected cycles of (b) S@PVDF, (c) 

S@P(VDF-co-CTFE), and (d) S@P(VDF-TRFE) cathodes. (e) Long-term cycling 

performance at 0.5 C and (f) rate capability of S@PVDF, S@P(VDF-co-CTFE), and 

S@P(VDF-TRFE) electrodes. 

 

 



 

Figure 3. UV-vis absorption spectra of DOL/DME solution with (a) S@PVDF electrode and 

(b) S@P(VDF-TRFE) electrode for selected cycles; SEM images of fresh electrodes: (c) 

S@PVDF, (d) S@P(VDF-co-CTFE), and (e) S@P(VDF-TRFE), and of the electrodes after 

50 cycles: (f) S@PVDF, (g)S@P(VDF-co-CTFE), and (h) S@P(VDF-TRFE) electrodes; (i, 

j) EDX spectra for selected areas of cycled S@PVDF electrode indicated in (f). 
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