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Abstract: Graphene has been widely applied as an electrode material in the energy storage 

fields. The strong π-π interaction between graphene layers, however, and the stacking issues 

lead to a great loss of electrochemically active surface area, damaging the performance of 

graphene electrodes. Developing three-dimensional (3D) graphene architectures that 

constructed of graphene sheet subunits is an effective strategy to solve this problem. The 

graphene architectures can be directly utilized as binder-free electrodes for energy storage 

devices. Furthermore, they can be used as a matrix to support active materials and further 

improve their electrochemical performance. In this paper, we reviewed recent advances in 

synthesizing 3D graphene architectures and their composites, as well as their application in 

different energy storage devices, including various battery systems and supercapacitors. In 

addition, their challenges for application at the current stage are discussed, and future 

development prospects are indicated. 
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1. Introduction 

Graphene has attracted tremendous attention since it was isolated from graphite in 2004,[1] 

due to its large specific surface area (SSA), superior mechanical properties, high electrical 

conductivity, etc. The phenomenon of aggregation and overlaying of graphene sheets induces 

great loss of accessible surface, however, and a relatively low electrochemically active SSA in 

real applications. To exhibit its excellent performance in bulk and promote its potential for 

practical applications, it is necessary to assemble individual graphene sheets into three-

dimensional (3D) architectures.[2-4] The widely reported 3D graphene architectures (3DGAs) 

not only possess structural advantages and unique properties that are inherited from the 

graphene sheet subunits, but are also endowed with higher surface utilization and stronger 

operability,[5,6] The 3DGAs include graphene aerogels, graphene foams, graphene networks, 

and so on. Compared with other 3D carbon architectures like carbon aerogels, the 3DGAs 

would have larger specific surface area, advanced porous structure, better electrical 

conductivity and integrality as the graphene sheet subunits are ultrathin, thus giving rise to 

more active sites and shorter ion diffusion channels. Therefore, 3DGAs are more promising in 

practical applications. 3DGAs can be prepared by chemical vapor deposition (CVD) 

methods.[7,8] To reduce the cost, the facile and versatile graphene oxide (GO)-based chemical 

synthesis methods have become the most common strategies. In addition to these strategies, 

3D printing technology has been applied to prepared 3DGAs in recent years. 

The unique properties of 3DGAs have attracted much attention in diverse areas, such as 

electronics, electrochemical energy storage and conversion, sensing, biomedical engineering, 

and so on.[5,6,9,10] The intriguing interconnected porous macrostructures give 3DGAs high 

electrical conductivity, superior structural stability, and rapid diffusion channels for ions. The 

large electrochemically effective surface area of 3DGAs provides abundant active sites for ion 

storage. All of these merits allow 3DGAs to be intensively applied in energy storage 

applications as binder-free electrodes. What is more, 3DGAs can serve as a monolithic matrix 
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to support different kinds of electrochemically active materials as electrodes for energy 

storage devices. In this regard, recent advances in 3DGA-based electrodes have been focused 

on combining one or more active materials to synthesize functional hybrids with excellent 

electrochemical properties. Notably, in order to further improve the overall structural stability 

and electrochemical performance of 3DGAs, various efforts have been made, including (i) 

designing controllable mesoporous or micropores in the 3DGAs structure to improve the 

efficiency of mass transport and charge transfer;[11] (ii) decorating graphene layers with 

additional carbonaceous materials to enhance their overall conductivity and stabilize the 3D 

interconnected configuration;[12,13] (iii) enriching defects in the 3DGA framework through 

heteroatom doping to increase the electrochemically active sites;[14] and (iv) combining 

conductive polymer with 3DGAs to effectively suppress the shuttle effect in lithium-sulfur 

(Li-S) batteries, increase the specific capacity of supercapacitors, etc..[15] The functionalized 

3DGAs combined with the electrochemically active materials could integrate the benefits of 

each component, thereby improving the specific performance in corresponding applications. 

In this paper, we firstly summarized the recent advances in the construction strategies for 

3DGAs. Then, we reviewed the applications of 3DGAs and 3DGA-based composite materials 

in various energy storage devices, including (i) lithium-ion batteries (LIBs) and sodium-ion 

batteries (SIBs); (ii) Li-S batteries; (iii) lithium metal batteries; (iv) other battery systems like 

Li-O2 batteries; and (v) electrochemical supercapacitors. By making systemically summary 

and comparison, we concluded the achievement and challenges of 3DGAs and their 

composites in these areas, and the likely future developments are also discussed. 

2. Synthesis of 3DGAs 

Graphene exists in form of one-atom-thick and closely packed two-dimensional (2D) sp2-

bonded carbon sheets. It is challenging to directly assemble graphene into various 3D 

microstructures due to the serious re-stacking problem of individual graphene sheets.[16,17] A 

straightforward method to prepare 3D porous graphene is to grow graphene on a porous metal 
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template (e.g. Ni foam) via CVD methods. In recent years, 3DGAs are increasingly prepared 

from a suspension of graphene oxide (GO), which is the oxidized derivative of graphene. GO 

has the amphiphilic property, and it is negatively charged and has rich functional groups in its 

surface, all of which make it an ideal building block for constructing different 

microstructures.[17-20] Furthermore, the diverse GO-based fabrication strategies have the 

ability to create 3D hierarchical graphene-based architectures with tailored morphologies, 

which is of tremendous interest due to the significance of the corresponding structures for 

promoting the performance required in specific applications. GO suspension based strategies 

include the gelation of GO in suspension, GO reduction-induced self-assembly of graphene, 

the template-assisted assembly method, etc.[21-23] The 3D printing method has also been 

applied to prepare 3DGAs in these years. 

2.1. CVD methods 

The CVD method makes it possible to synthesize 3DGAs with controlled layer and 

morphologies. In this method, metal substrates (such as Ni foam) are normally used as 

catalyst. At high temperature, organic precursor (such as CH4, C2H6, and glucose) vapors 

undergo pyrolysis and carbon deposition on the substrate, and after the substrate removal 

process, 3DGAs with different structures and properties can be achieved.[24-26] 

Chen et al. were the first to use the CVD method to develop 3D graphene foam (GF).[27] 

They used Ni foam as the substrate and catalyst, CH4 as the carbon precursor, and an Ar/H2 

mixture as the carrier gas. The CH4 was deposited at 1000 °C under ambient pressure, and 

then 3-layered graphene films were precipitated on the surface of the Ni foam. To protect the 

graphene foam, a thin layer of poly(methyl methacrylate) (PMMA) was coated on the surface 

of the graphene-Ni composite, and after that, the Ni substrate was etched with hot HCl or 

FeCl3 solution. The obtained GF can be used to make composite (for example GF-

polydimethylsiloxane (GF-PDMS)) for other applications. Inheriting the 3D interconnected 

network of Ni foam, the 3D GF has a continuous and interconnected structure, in which 
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graphene nanosheets are in direct contact with each other without any breaks. Cao et al. has 

done a similar work for the application of supercapacitor by switch the carbon source to 

ethanol.[28]  

2.2. GO-based chemical synthesis methods 

2.2.1 Gelation of GO in suspension 

GO can form a stable dispersion in water due to its various hydrophilic oxygenated 

functional groups.[29] The gelation of GO can be achieved either by disrupting the dispersion 

balance or adding a cross-linker. Increasing the bonding force or weakening the repulsion 

force is an effective way to disrupt the dispersion balance. A facile method to achieve GO 

gelation is decreasing the pH value of the GO solvent, which can weaken the electrostatic 

repulsion and simultaneously enhance the hydrogen bonding force (due to the protonation of 

carboxyl groups).[30] Additionally, introducing salt ions to change the interactions in the GO 

solution is another option to achieve controlled destabilization of the GO dispersion and then 

form GO gels.[31,32] 

The cross-linkage of GO sheets is another effective method, for which various cross-linkers 

utilizing different reaction mechanisms have been intensively studied. For examples, several 

polymers (such as polyvinyl acetate (PVA), polyethylene oxide (PEO), 

hydroxypropylcellulose (HPC), polyvinylpyrrolidone (PVP), ethylenediamine (EDA), 

polyamines (PA), etc.) have been used to generate hydrogen bonds between GO sheets and 

form GO gels.[33-36] Additionally, cationic molecules containing quaternary ammonium salts, 

such as cetyltrimethyl-ammonium bromide (CTAB) and tetramethylammonium chloride 

(TMAC), could promote long-range electrostatic attraction towards the anionic charged GO 

sheets.[38] The existence of high density amine groups in polyethyleneimine (PEI) chains is 

conducive to protonation on the polymer, leading to both hydrogen bonding and electrostatic 

attraction between PEI and the GO sheets.[36] Some other cross-linkers, such as polyamines, 

ethylenediamine, thiourea, and pyrrole, could react with the functional groups on GO to form 
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covalent bonding, resulting in improved mechanical strength. For instance, cross-linkers 

containing amines can easily react with the epoxide, carboxyl, and hydroxyl groups on GO at 

high temperature.[37] Interestingly, some nanoparticles, such as KMnO4, can act as cross-

linkers as well. The strongly oxidative KMnO4 reacts with carbon atoms on reduced graphene 

oxide (rGO) and generates defects with dangling bonds, which enable the reduced MnO2 to 

cling to and form an interconnected network with rGO sheets.[38] Apart from the above 

mentioned cross-linkers, metal ions with multivalent states (e.g., Ca2+, Mg2+, Cu2+, Pb2+, Cr3+, 

Fe3+) could also interact with individual GO sheets via bonding forces and promote the 

gelation of GO.[39] Biomacromolecules can interact through π-π stacking, electrostatic 

interaction, and hydrogen bonds with GO sheets.[40] 

2.2.2. GO-based template-assisted assembly 

Apart from the above-mentioned strategies, utilizing various sacrificial templates is another 

approach to prepare 3DGAs, in which the size, uniformity, and shape of the whole 3DGA 

framework can be precisely controlled.[41] Along with the traditional templates, such as Ni 

foam, some other different templates were utilized to achieve the 3D structures.[42] Zhai et al. 

fabricated a 3D graphene hollow (3DGH) structure via the assistant of Ni foam template.[43] 

Firstly, Ni foam was immersed in GO solution at 160 °C for 12 h to deposit GO on the Ni 

skeleton. After the vacuum-drying and template removal process, the obtained product was 

reduced to graphene at high temperature (900 °C). The 3DGH had a low mass density of 0.82 

mg cm-2 and certain degree of flexibility (Figure 1a), with its construction based on a hollow 

graphene skeleton ~ 100 μm in diameter and several nanometers in thickness (Figure 1b and 

1c). Due to these structural advantages, the 3DGHs can be used as active materials or current 

collectors to support electrode materials for energy storage applications.  

Ice crystals can act as solid templates to shape the building blocks and achieve the desired 

porous structure. Qiu et al. prepared an ultralight and superelastic cellular structured graphene 

monolith (Figure 1d-f) by freeze-casting of a partially reduced GO suspension.[44] The pre-
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reduced GO was squeezed and forced to align along the moving solidification front, yielding a 

highly ordered cellular structure. Therefore, the ice-template technique is a facile and 

straightforward self-assembly strategy to obtain porous microstructures. Some other 

techniques (such as the spray-drying method, the boiling assisted method, the breath-figure 

self-assembly strategy, etc.) have been applied to realize 3DGAs.[45,46] All of these fascinating 

efforts have paved the way to exploring the fabrication and application of 3DGAs. 

Normally, to convert the obtained 3D GO architectures to 3DGAs, the subsequent reduction 

process is essential. The most common strategy is using reduction agents such as hydrazine, 

ascorbic acid, etc.. Due to the low temperature of these reduction reaction, the prepared 

graphene foam have low C/O ratio, and unsatisfactory electric conductivity and mechanical 

properties.[47,48] Thermal reduction at high temperature could improve the conductivity, but it 

may sacrifice the mechanical strength of the 3DGAs. In order to solve this problem, Tang et al. 

reported a magnesiothermic reaction at 700 °C to reduce freeze-dried GO gel, and achieved an 

rGO foam with high conductivity of 27.7 S·m-1 at 3.6 mg·cm-3 and good mechanical 

performance (Figure 1g).[49] 

2.3.3. GO reduction-induced self-assembly of graphene 

3D porous graphene can also be prepared from GO by a solution-based reduction process, 

where the partial removal of oxygen functional groups can induce the self-assembly of 

graphene sheets into a 3D network.[50] The hydrothermal method is the most common strategy 

for the reduction of GO to construct graphene-based hydrogels. Here, water acts as the 

reducing agent, and the mechanism behind the reduction process is similar to that for the H+-

catalysed dehydration of alcohol.[51] For instance, Xu et al. reported the self-assembly of a 3D 

graphene hydrogel via a hydrothermal process and found that, when the concentration of the 

GO dispersion went over a certain amount, the self-assembly of graphene would take place.[50] 

The hydrothermal method also involves high temperature and high pressure, however, which 

limits possibilities for large-scale application. Alternatively, the chemical reduction strategy 
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can be conducted under mild reducing conditions (< 100 °C and normal atmosphere) by 

adopting mild reduction agents, such as sodium ascorbate, NaHSO3, Na2S, ascorbic acid, 

hydroquinone, hydrogen iodide (HI), etc. For example, Chen at al. fabricated a 3DGAs under 

mild chemical reduction (95◦C, atmospheric pressure) with various reducing agents.[52] They 

also found that the gel synthesized using HI and NaHSO3 had better electrical conductivity. 

Worsley et al. reported that, with the assistance of NH4OH, even at 85 °C, the gelation of GO 

still could be observed.[53] Goldstein et al. demonstrated that the physical changes in GO bond 

formation were accompanied by the removal of oxygen functional groups, with the partial re-

formation of the sp2 network during the assembly process for the 3D structure.[54] Its 

simplicity and scalability have made the chemical reduction route a facile and effective way to 

prepare 3DGAs on a large-scale. 

2.2.4. Factors influencing the synthesis 

The formation of 3D porous structures will be greatly influenced by various conditions.[55] 

According to the choice of 3DGA formation method and the relevant parameters, researchers 

can tailor the fabrication process and obtain specified 3D porous architectures to satisfy the 

needs of the corresponding application. 

It is well established that the pore morphologies have affinities to some physical properties 

of the 3D architectures.[56-58] For instance, the mechanical stability of the as-prepared 3DGAs 

is determined by the interconnectivity, degree of crosslinking, etc.. Meanwhile, some 

properties, such as the pore size distribution and density of the 3DGAs, can be tailored by 

controlling the synthesis parameters.[52,57] Xu et al. studied the assembly behavior of 3DGAs 

by adjusting the concentration of the initial GO and the reaction time of the hydrothermal 

process.[50] The results demonstrated that the concentration of GO could affect the size and 

strength of the 3DGAs, while the reduction time could be used to tailor the electrical 

conductivity and size of the resultant 3DGA. The density and pore size distribution of the 

3DGAs were also determined by the size of the selected GO precursors. Compared to the 
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large-size GO nanosheets, smaller ones would result in a higher 3DGA density and smaller 

pore size. Some other properties, such as the pore wall thickness of a hydrogel would be 

affected by introducing site specific cross-linkers.[13] The orientation of the pores in the 3D 

construction could be controlled by adjusting the orientation of the 2D GO precursors. The 

orientation-controlled 3DGAs could exhibit anisotropic conductivity and acoustic vibrations 

that were guided in desired directions. After the formation of the graphene hydrogel, the 

drying method could help to adjust the volume and density of the porous framework.[57] For 

example, Han et al. obtained graphene aerogel by soaking graphene hydrogel in ammonia 

solution, which can control the density as well as volume of the GA through adjusting the 

concentration during the freeze-drying process (Figure 1h).[57] 

2.3. 3D Printing methods 

Apart from these methods, 3D printing is another effective strategy to prepare 3DGAs. The 

3DGAs which are synthesized by 3D printing methods can achieve higher mass loading and 

other tailored properties for energy storage applications.[59-63] Zhu et al. reported 3D periodic 

graphene aerogel architectures that were prepared via 3D printing methods. These aerogels 

are lightweight, and have high conductivity and supercompressibility (up to 90 % 

compressive strain) (Figure 2).[64] The GO inks were prepared by combining highly-

concentrated GO suspensions with silica powder to form a homogenous, highly viscous and 

thixotropic ink for printing. (NH4)2CO3 or sol-gel chemicals (as with resorcinol-formaldehyde 

(R-F) solution) were added into the inks to gelate the concentrated GO suspensions. Then the 

inks were transferred into a spring barrel, and extruded through a small-size nozzle to pattern 

3D architectures in an isooctane bath (to avoid drying of the inks in air). Afterwards, the 

printed microlattice architecture was supercritically dried to remove the solution before being 

heat treated at 1050 °C under N2 atmosphere for carbonization, while, the GO was reduced to 

graphene at high temperature. Finally, the silica powder was washed with hydrogen fluoride 

(HF) solution. The prepared 3D cubic graphene microlattices were designed with an in-plane 
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center-to-center filament space of 1mm and a diameter of 0.25 mm, resulting in a space-to-

diameter ratio of 4. By adjusting the filament space and diameter, the densities of the printed 

3DGAs could be controlled. The using of R-F solution led to a more open and less cross-

linked network compared with gelation methods based on gelation without R-F solution. The 

mechanical strength of the 3D printed graphene architectures showed an order of magnitude 

improvement compared to bulk graphene. By using similar strategy and adding graphene 

nanoplatelets (GNP) into GO suspension to reduce the electric resistance in the final products, 

Zhu et al further developed 3D printed graphene composite aerogels (GCA), which were 

lightweight and highly conductive, for high-energy-density supercapacitors.[65] 

The 3D-printing methods could be used to prepare 3DGAs with controllable 

microstructures and morphologies on a large scale. The key challenges in this method are, (i) 

developing printable GO-based or graphene-based inks with suitable viscous and thixotropic 

properties; (ii) maintaining the intrinsic properties of single graphene sheets, such as large 

surface area, and excellent mechanical and electrical performance. 

For a short summary, CVD is a straightforward method to synthesize highly-conductive 

3DGAs with loose structure and low density. Nevertheless, considering the high-cost and 

sophisticated process involved in rigorously controlling the deposition temperature and 

pressure, the use of a carbon-based gas source, and the additional etching process for the 

metal template, this approach is not practical for large-scale preparation of 3DGAs. The GO-

based chemical synthesis methods are more facile and versatile. In terms of the gelation of 

GO in suspension methods, GO can be easily gelated by disrupting the dispersion balance or 

adding a cross-linker, although a subsequent reduction process is required. As for the GO-

based template-assisted method, it is useful to design the structure of the 3DGAs by 

controlling the shape of the templates, although the template removal process is needed. 

Without an individual reduction process, the GO reduction-induced self-assembly of graphene 

method is more convenient. Finally, the 3D-printing method, it is facile to fabricate 3DGAs 
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with different spatial structures, and 3D printing would have advantages to prepare 3DGAs on 

a large scale. 

3. 3DGAs as electrode materials for batteries 

3DGAs have been synthesised and are widely used as electrode materials for battery 

systems, such as LIBs and SIBs.[66-68] The 3D design helps to reduce the loss of 

electrochemically active surface area for energy storage, and the porous structure also 

facilitates the diffusion of electrolyte ions in the electrodes. As a result, 3DGAs exhibit 

superior electrochemical properties.[69-72] More importantly, because of the nature of high 

electrical conductivity and integrity, 3DGAs could be excellent self-supported electrodes. 

The typical discharge-charge curves reveal that the lithiation behaviour of graphene 

combines the features of both graphitic carbon and hard carbon (Figure 3a).[73] The capacity 

in the region higher than 0.5 V is related to the faradic capacitance of the graphene surface 

and edge sites, while the capacity in the low-voltage region below 0.5 V can be assigned to 

Li+ binding on the basal planes of graphene layers. It is worth noting that there is an 

irreversible voltage slope at ~ 1.0-0.6 V in the first discharge process, which should be 

attributed to the formation of the solid electrolyte interphase (SEI) on the huge surface area of 

graphene (Figure 3a).[73] Similar to its behaviour in LIBs, the SEI forms at ~ 0.5 V with high 

irreversible capacity loss when graphene is used as anode for SIBs (Figure 3b).[74] No 

obvious voltage plateaus can be observed in the following charge-discharge cycles. The 

3DGAs delivered the same lithiation and sodiation behaviours as individual graphene 

nanosheets with enhanced electrochemical performance. The interconnected structure of 

3DGAs effectively improves their Li+/Na+ storage performance. Zuo et al. fabricated a 3D 

graphene foam with large-scale continuity and used it as a binder-free anode for LIBs (Figure 

4a).[75] This 3D graphene anode had interlayer pores and a high SSA of 835 m2 g-1 (Figure 

4b). Based on its interconnected porous structure, it delivered a discharge capacity and a 

charge capacity of 1519 mAh g-1 and 932 mAh g-1 respectively, with an initial Coulombic 
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efficiency (ICE) of 61.3%. Even at the high discharge rate of 2 A g-1, the capacity still 

reached 342 mAh g-1 (Figure 4c).[75] Zhang et al. used hydrothermal, freeze-drying, and 

annealing methods to synthesize a N-doped 3D free-standing rGO aerogel (Figure 4d).[76] 

The 3D porous structure could provide sufficient space for Na+ storage and enable fast and 

reversible Na+ insertion. The doped N heteroatoms, especially pyrrolic N and pyridinic N, 

could create more electrochemically active sites for Na+ storage. When applied as SIB anode, 

it exhibited a stable capacity of 287.9 mAh g-1 at 100 mA g-1, superior to that of rGO sheets 

(Figure 4e).[76] 

Although the 3DGAs showed high Na+/Li+ storage capabilities, the large capacity loss in 

the first cycle and low ICE are worth attention (Table 1). This phenomenon was more serious 

in SIBs. In addition, there were no obvious voltage plateaus in the discharge-charge process 

when GAs were used as anodes for LIBs or SIBs. These drawbacks have greatly hindered the 

practical application of 3DGAs. So, addressing these problems is of major significance. 

Rational design of the SSA and pore size distribution of 3DGAs would be helpful. 

Moreover, the 3DGAs possessed low density due to their porous structure, which certainly 

reduced the volumetric energy density of the electrodes. Continuous efforts have been made 

to develop high-volumetric-density 3D graphene electrodes. For example, Zhang et al. 

constructed a high-density porous graphene macrofoam (HPGM) through a 3D densification 

method for high-density SIBs (Figure 5a-c).[77] To be specific, the HPGM was prepared by 

drying graphene hydrogel at 80 °C in an air-circulating oven. The obtained HPGM had a 

density of 1.04 g cm-3, much higher than that of porous graphene foam (PGM) (0.32 g cm-3) 

that was prepared by freeze-drying graphene hydrogel. Xu et al. reported a solvent-exchange 

approach to prepare solvated graphene frameworks (SGFs) by using graphene hydrogel as 

precursor (Figure 5d).[78] The obtained SGFs were pressed and used as anode for LIBs 

(Figure 5e). In this anode, the graphene layers were stacked together tightly (Figure 5f), 

leading to a high packing capacity of 0.65 g cm-3. It delivered stable Li+ storage capacity as 
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high as ~ 1360 mAh g-1 (Figure 5g). When the discharge current density was increased to 5 A 

g-1, the capacity was still over 300 mAh g-1 (Figure 5h and 5i). The volumetric capacity was 

calculated to be as high as 487 mAh cm-3 at 1 A g-1. 

In consideration of its low ICE, lack of voltage plateaus, and low density, it is reasonable to 

conclude that 3DGAs are not the best electrode candidates for batteries. Alternatively, the 

porosity advantage of 3DGAs can be used to support active materials for different battery 

systems. Constructing 3D composites of graphene and electrochemically active materials 

would be more promising for energy storage applications. 

4. 3DGAs supporting active materials as composite electrodes for batteries 

3DGAs usually serve as an excellent support matrix for electrochemically active materials 

to alleviate their mechanical stress that is caused by volume changes during cycling. In 

addition, 3DGAs are able to improve the electrical conductivity of these active materials. 

Furthermore, the 3D interconnected porous structure promotes access of electrolyte ions into 

electrodes. The 3D framework can also stabilize the structure of the overall electrodes during 

cycling. Therefore, introducing 3DGAs as a supporting matrix is an effective strategy to 

improve the electrochemical performance of various materials, including their 

discharge/charge capacity, cycling stability, and rate performance.[44,79-81] 

4.1. 3DGA-based composite electrodes for LIBs 

To date, various strategies have been applied to develop 3DGA-based electrode materials 

for LIBs.[82-88] For instance, some research groups have employed simple one-pot 

hydrothermal methods to prepare composites of 3D-structured active materials with 

3DGAs.[83,84,87] Compared with bare active materials, their counterparts in a 3DGA matrix 

exhibited improved cycling performance and rate capability. In addition, a facile 

centrifugation method was introduced to fabricate a 3DGA-based composite hybrid, in which 

metal-organic framework (MOF)-derived porous Fe2O3 was encapsulated in a graphene 



  

14 

 

aerogel framework (3DG@Fe3O2).
[89] The porous Fe2O3, which has poor electrical 

conductivity and mechanical strength, was reinforced by the graphene aerogel matrix. This 

kind of structure provided Fe2O3 with an interpenetrating conductive network, enough buffer 

space to accommodate the stress, and robust structural stability during cycling. Lee at al. 

fabricated a few layer MoS2-anchored graphene aerogel paper (MGAP) to form a composite 

to act as a free-standing LIB anode material, in which graphene paper served as the 

conductive matrix for the MoS2 sheets and as a free-standing support.[90] Gao et al. developed 

a 3D V2O5@N-doepd graphene composite aerogel (V2O5@3DNG) via a one-step 

hydrothermal strategy, in which V2O5 particles were confined in a graphene framework 

(Figure 6a and 6b).[91] Benefiting from the graphene aerogel matrix, when applied as cathode 

for LIBs, the composite aerogel delivered enhanced electrochemical performance. 

Combinations of 3DGAs with carbonaceous materials have proved to be effective for 

further improving the electrochemical performance of 3DGA-based composite 

electrodes.[10,11,92] To construct a stable 3D carbonaceous interaction matrix, the most typical 

approach is decorating the graphene framework with carbonaceous materials as additives. For 

example, Wei et al. fabricated a composite electrode in which Fe3O4 nanospheres prewrapped 

in graphene sheets (GS) were confined in a 3D graphene framework (Fe3O4@GS/GF).[93] The 

double-shelled graphene protected the Fe3O4 nanospheres from aggregation, further alleviated 

the volume expansion, and improved the overall conductivity (Figure 6c). Similarly, a 3D 

composite was reported that consisted of Si nanoparticles prewrapped in graphene sheets and 

embedded into the backbone of a 3D graphene honeycomb.[94] The dual graphene coats could 

not only protect the Si nanoparticles from structural collapse during volume changes, but also 

allowed stable SEI formation to take place on the graphene rather than on the Si nanoparticles. 

The extra carbonaceous materials could link the active materials with the graphene framework, 

increasing the structural stability of the composite electrode. 

Chemical functionalization of 3DGAs, such as by heteroatom doping, could potentially 
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allow highly reactive sites to exist inside the structure. The doped 3DGAs with abundant 

defect sites has advantages in terms of the dispersion of active materials, improving the 

binding force, and further promoting the lithium storage capability and the transportation rate 

of Li ions.[95] Thus, the doped 3DGAs are superior in combination with active materials for 

energy storage application.[96,97] For instance, Han et al. reported a composite for LIBs in 

which Co3O4 particles were uniformly embedded in a N-doped graphene network 

(Co3O4@NGN).[14] The electrode showed enhanced capacity of 676 mA h g-1 at 1 A g-1 after 

400 cycles. Furthermore, the co-existence of extra carbonaceous materials and heteroatom 

doping in the 3DGA framework could combine the benefits of each component, and their 

synergistic effects could further improve the energy storage performance of 3DGA-based 

composite electrodes. In this regard, a 3D porous carbon coated MoS2/N-doped graphene 

composite (C-MoS2/N-G) was reported for LIB anode.[98] The coated carbon and doped N 

heteroatoms could increase the density of active sites in the graphene framework, while 

simultaneously modulating the electronic structure of the whole composite and further 

enhancing its Li+ storage capability. 

4.2. 3DGA-based composite electrodes for SIBs 

Alloy-based anodes, such as Sn and P, are popular SIB anode materials due to their high 

theoretical capacity.[99,100] Nevertheless, they suffer from severe volume changes during 

sodiation/de-sodiation cycles, leading to poor electrochemical performance. In order to solve 

this problem, alloy-type anodes were made into composites with 3DGAs to construct hybrid 

structures for SIB anodes.[101,102] For example, in order to further improve the SIB 

performance of red P, Gao et al. constructed a 3D integrated carbon/red P/graphene aerogel 

composite (C@P/GA) (Figure 7).[103] A vapor-redistribution strategy was adopted to disperse 

the red P nanoparticles uniformly within the 3D graphene-based architecture. In the obtained 

C@P/GA architecture, red P nanoparticles with a size of 10-20 nm were uniformly 

encapsulated in the crumpled matrix and covered by carbon and graphene sheets. With the 
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benefits of this advanced structure, C@P/GA delivered excellent electrochemical performance. 

Even at 1 C (2.6 A g-1), the sodium storage capacity was still higher than 720 mAh g-1. The 

excellent SIB performance of the C@P/GA architecture was attributed to its unique design. 

During the sodiation/de-sodiation process (P + 3Na+ + 3e− ↔ Na3P), P nanoparticles were 

confined in the C@GA matrix, increasing the interfacial contact between P and the carbon 

framework, as well as accommodating the volume changes of red P (Figure 7). Similar to red 

P, the volume expansion of Sn during sodiation is one of the main obstacles to its practical 

application.[104] By constructing 3D graphene/Sn composites, this problem can be effectively 

addressed. In this regards, Pan et al. synthesized a Sn/3D graphene nanosheet (Sn/GS) 

composite, in which small-size Sn particles (~ 10 nm) were uniformly distributed within the 

3DGAs.[104] The obtained Sn/GS composite was applied as free-standing anode for SIBs, and 

thanks to its structural advantages, it delivered much better electrochemical performance than 

pure Sn nanoparticles. 

Some conversion type anodes also suffer from serious volume changes during the sodiation 

process, such as metal oxides (SnO2, Sb2O3, Fe3O4, Co3O4, etc.)[105-109] and metal sulfides 

(MoS2, Sb2S5, SnS, etc.)[110-112]. In addition, their poor intrinsic conductivity negatively affect 

their electrochemical performance. These drawbacks lead to capacity fading and poor rate 

performance. Distributing the conversion type anode materials into 3DGAs can solve these 

problems and achieve better electrochemical performance. For example, Li et al. constructed a 

SnO2-graphene dual aerogel and studied its sodium storage properties (Figure 8a).[109] In this 

composite, SnO2 crystallites ~ 5 nm in size were conformably blended with distorted 

graphene planes (Figure 8b). When applied as SIB anode, the graphene-SnO2 aerogel 

delivered an enhanced capacity of 221 mAh g-1 (Figure 8c). Hu et al. supported MoS2 with 

3D graphene and used the graphene/MoS2 composite as anode for SIBs. In the obtained 

composite, few layered MoS2 nanosheets were uniformly combined with graphene aerogel, 

forming a 3D porous architecture (Figure 8d and 8e).[113] Benefiting from these structural 
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advantages, the composite delivered a discharge capacity of 1145 mAh g-1 after 100 cycles at 

0.1 A g-1, much better than the performance of pure MoS2 (Figure 8f). Similarly, 3D aerogels 

of graphene-CNT-WS2 (Figure 8g), where CNT is carbon nanotube,[114] graphene-Sb2S5 

(Figure 8h),[111] and graphene-Bi2S3 (Figure 8i)[115] were also developed, and the results also 

proved that the combination with 3DGAs could help to increase the capacity retention and 

rate capabilities of conversion type electrode materials. 

To summarize, the 3DGA matrixes successfully improved the energy storage performance 

of the electrochemically active materials. The superior performance of 3DGA-based 

composite materials originates from their porous structure, enhanced electrical conductivity, 

and overall structural stability. Most of the 3DGA-based composite structures were utilized as 

anodes for LIBs/SIBs. In these composite anodes, both the 3DGAs and the active materials 

contributed to the Li+/Na+ storage capacity. Because of this, the composite electrodes 

exhibited the disadvantages of both components. Normally, the composite anodes delivered a 

low ICE and relatively high voltage plateaus, which make them imperfect candidates for 

industrial use (Table 1). In addition, at the current stage, the mass loading of active materials 

on 3DGA substrate is not sufficient for practical application. Optimization of the structure of 

the 3DGA matrix would be an effective way to solve these problems. In addition, choosing 

better active materials which have higher ICE and appropriate voltage plateaus could also be 

useful to boost the application of 3DGA-based composite anodes. 

4.3. 3DGA supporting cathodes for Li-S batteries 

Li-S batteries are regarded as promising power sources, due to their ultrahigh theoretical 

capacity of 1675 mAh g-1 and energy density of 2576 Wh kg-1.[116-119] Nevertheless, the 

intrinsic insulating property of S and the shuttle effects of the intermediate polysulfides (Li2Sx, 

4 ≤ x ≤ 8) greatly shorten their life-span and damage their electrochemical performance.[111-114] 

Porous carbon nanomaterials, such as the ordered carbon CMK-3, have been successfully 

utilized for accommodating the S cathode and solving these problems.[120] Among them, 
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3DGAs would be classical representatives. The intrinsic conductivity of 3DGAs improves the 

electrical conductivity of S. In addition, the porous structure helps to enhance the mass 

loading of S and ensure good infiltration of electrolyte.[121] More importantly, due to their 

strong capability to absorb electrolyte, the nanostructure of 3DGAs is able to suppress the 

migration of polysulfides, thus alleviating the shuttle effects. Therefore, 3DGAs are ideal 

cathode hosts for high-performance Li-S batteries. Beyond S, lithium sulfides (Li2S) and even 

lithium polysulfides have also been studied as cathodes in recent years. Similarly, the 

construction of 3DGAs and Li2S/lithium polysulfides composites was reported to be useful 

for improving the performance of Li2S cathode.[122]  

For example, Zhou et al. developed a 3D doped graphene sponge to accommodate large 

amounts of dissolved lithium polysulfides as cathode for Li-S batteries.[123] The freeze-dried 

3D graphene sponge was cut and pressed into slices, and applied as a host to absorb lithium 

polysulfides without current collectors or binders (Figure 9a and 9b). The composite cathode, 

with active materials loading as high as 4.6 mg cm-2, delivered high capacity of 1200 mAh g-1 

at 0.2 C as well as excellent capacity retention. A similar 3D binder-free rGO architecture 

supported S composite cathode (S-r-GO), was reported to exhibit an excellent areal capacity 

of 3 mAh cm-2 after 75 cycles.[124] 

Although these improvements have been achieved, 3DGAs alone are not sufficient to 

prevent polysulfides from taking part in the shuttle effect. For this purpose, additional 

carbonaceous materials, such as carbon nanotubes (CNTs), porous carbon, and pyrrole, have 

been utilized to construct porous hybrids with 3DGAs.[125] This kind of architecture is able to 

act as a trap to capture the polysulfides and enhance the mass loading of cathodes. In addition, 

the micro-, meso-, and macrospores, as well as the large size pores inside the hybrids, can 

facilitate efficient penetration of the electrolyte and guarantee rapid transport of Li+ ions.[126-

130] In this regard, a 3D CNT/graphene-Li2S cathode (3DCG-Li2S) with ultra-high Li2S 

loading of 81.4 wt.% was realized through hydrothermal reaction and a subsequent liquid-
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infiltration-evaporation coating technique (Figure 9c-f).[131] The highly flexible and 

conductive 3D mesoporous interconnected network based on CNT/graphene provided 

efficient channels for electron transfer and ionic diffusion, and decreased the solubility of 

polysulfides in the electrolyte during cycling. As a result, the CNT/graphene-Li2S cathode 

exhibited a high reversible capacity of 1123.6 mAh g-1 with 0.02% capacity decay per cycle, 

as well as a high-rate capacity of 514 mAh g-1 at 4 C. Another typical example is a hybrid 

carbon aerogel (HCA) film that was constructed from graphene sheets and CNTs, and was 

investigated as an interlayer between the cathode and the separator for Li-S batteries (Figure 

10a).[132] To prepare the HCA film, a dispersion of graphene sheets and CNTs was poured into 

a planar aluminum foil container and then placed above liquid N2, followed by freeze-drying. 

The hierarchical cross-linked networks of the HCA interlayer help to capture the soluble 

polysulfides, without affecting the ion diffusion speed because of its porous properties.  

Since the intrinsic non-polar C-C bonding in the 3DGA host cannot offer sufficient 

chemisorption for polar polysulfides, additives with good absorption of polysulfides are added 

into 3DGAs to further restrain shuttle effects.[133-136] Polar polymers, such as polyaniline, 

polythiophene, and polypyrrole, have high conductivity and good compatibility with 

polysulfide intermediates, but they lack enough space for cathode loading. Therefore, adding 

conductive polymer to provide absorption sites on the graphene aerogel framework is a 

rational design to reach the expected target. In addition to polymers, pyrrole monomer has 

similar effects, along with better dispersibility in 3DGAs and better adhesion to the carbon 

framework. For example, a pyrrole modified graphene host has been applied for high-

performance S cathode (Py-GF@S).[137] In this structure, pyrrole provided strong chemical 

bonding for polysulfide anchoring, and graphene aerogel served as a matrix to enhance the 

conductivity as well as simultaneously increasing the loading content of the S cathode. The 

composite cathode, with a high mass loading of ~ 6.2 mg cm-2, displayed an initial specific 

capacity of 985.8 mA h g-1 and capacity retention of 81% after 100 cycles at 0.5 C. 
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Researchers also found that some polar materials, such as ZnO, MgO, and Li3PS4, were 

effective absorbing agents for trapping the soluble polysulfides.[1149] For example, graphene 

aerogel/TiO2 composite, with S loading of 75.1 wt.%, was adopted as cathode (GA/TiO2/S) 

for Li-S batteries.[138] The cathode exhibited a discharge capacity of 512 mAh g-1 after 250 

cycles at 1 C with a capacity decay of 0.128% per cycle. The formation of chemical bonds 

between TiO2 and S nanoparticles was critical for restricting the dissolution of polysulfides. 

Yu et al. developed an atomic layer deposition (ALD) technique to modify an ultrathin ZnO or 

MgO layer on the graphene aerogel-S composite skin.[139] The graphene aerogel skin and ZnO 

or MgO layer (ZnO/G-S or MgO/G-S) worked together as barriers to confine the polysulfides 

within the electrode region. Jiao et al. proposed a Li2S@Li3PS4/GA composite (in which GA 

refer to graphene aerogel) as cathode for Li-S batteries.[140] The Li3PS4 coating layer could 

improve the conductivity of the whole electrode and provide protection for the Li2S cathode 

to some extent. 

To further restrain the dissolution of polysulfides, heteroatoms, such as N, S, B, and F, are 

doped into 3DGAs to form polar domains on the carbon framework, which can interact 

chemically with the polysulfides and thus alleviate the shuttle effects.[125,141,142] For instance, a 

porous B-doped 3DGA loaded with S was prepared for Li-S batteries. The doped B 

heteroatoms became chemical adsorption sites for the negative polysulfides. Compared with 

un-doped 3DGA/S composite, the B-doped 3DGA/S composite delivered both higher capacity 

and better rate capability.[143] Zhou et al. developed a Li2S coated 3D B-doped or N-doped 

graphene aerogels as a self-supported cathode through a facile liquid infiltration-evaporation 

coating method for Li-S batteries (Figure 10b-d).[144] Nevertheless, the introduction of 

heteroatoms into the graphene-based materials would generate an energy gap between the 

valence and conduction bands and hinder the facile transmission of electrons. Thus, the 

combination of the extra conductive additive and heteroatoms in 3DGAs would be an 

excellent design to overcome the above-mentioned drawback. 



  

21 

 

It is worth noting that, because of their high working potential, the 3DGA hosts make a 

negligible capacity contribution in Li-S batteries. Despite the success of 3DGAs towards 

improving their electrochemical performance, the cathode loading content is not satisfactory 

for industrial applications. In addition, the shuttle effects of polysulfides have not been 

addressed well to data, and the capacity fading during cycling is still a big problem (Table 2). 

Optimization of the pore structure and increasing the pore volume of the 3DGA matrix would 

be helpful towards improving the cathode loading. Beyond one-element doping, dual-element 

doping or tri-element doping on the 3DGA framework could be useful to trap the polysulfides. 

Furthermore, combinations of different modification strategies, such as heteroatom doping 

and polar material modification, would have synergistic effects towards further improving the 

performance of Li-S batteries. 

4.4. GAs as support for lithium metal batteries 

Li metal is an ideal anode material for next-generation batteries because of its ultrahigh 

capacity (3860 mAh g-1) and low redox potential (-3.04 V vs. the standard hydrogen 

electrode).[145] Nevertheless, the enormous volumetric changes of lithium metal anode and 

uncontrollable dendrite growth during plating/stripping processes are greatly impeding its 

practical application. To address the above issues, the key lies in regulating the Li deposition 

behavior and providing the necessary space to mitigate volumetric change.[146] Based on the 

above considerations, well-designed conductive matrices have been developed as stable hosts 

to mitigate volumetric change and entrap Li dendrites.[147-150] Since the weight of the 

conductive matrix dominates the real energy density of composite electrodes, carbon-based 

porous matrices, typically 3DGAs, show irreplaceable advantages compared with metallic 

matrices.[147] 

Jin et al. fabricated a 3DGA with an interconnected microtube structure and applied it as 

host for Li metal anode.[151] The 3DGA was covalently connected, exhibiting the desired 

mechanical strength and stability during cycling (Figure 11a-c). With the advanced porous 
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architecture of the 3DGA, the thickness changes of Li metal electrode were controlled within 

an acceptable level at around 9% during plating/stripping processes. The Li metal anode with 

the 3DGA as host demonstrated a long lifespan of up to 3000 hours, even with high cycling 

capacity of 10 mAh cm-2 and high cycling current density of 1 mA cm-2. Its reversible 

gravimetric capacity was calculated to be as high as 913 mAh g-1. Lin et al. proposed a 3D 

layered Li-rGO composite electrode prepared by a subtle “spark” reaction.[152] When densely 

stacked GO films came into contact with molten Li, volatile residual water and surface 

functional groups of GO were released under the reducing conditions, and the generated gas 

pressure expanded the films into a porous structure with uniform nanogaps. The formation of 

the 3D structure could overcome the stacking problem of rGO films and also provide 

interlayer space to absorb molten Li (Figure 11d). Thanks to the lightweight rGO matrix, 

which only took up 7 wt.%, the as-obtained Li-rGO composite electrode delivered capacity as 

high as ~ 3390 mAh g-1. The porous rGO played an important role in maintaining the 

dimensional stability of the composite electrode, and only ∼ 20% thickness fluctuation was 

observed during Li plating and stripping processes. Zhao et al. introduced a free-standing 

LixSi/graphene foil to replace Li metal anode.[153] The LixSi nanoparticles were synthesized 

via heating Li metal and Si nanoparticles in Ar atmosphere. Fully expanded LixSi 

nanoparticles were mixed with graphene sheets and then casted onto a free-standing foil. The 

densely packed LixSi nanoparticles were confined in 3D graphene networking to avoid contact 

with gas molecules (Figure 11e). Consequently, the LixSi/graphene foil exhibited excellent air 

stability, which is a significant improvement in terms of enhancing safety in use and 

simplifying the requirements on the industrial battery fabrication environment. The specific 

capacity of the obtained electrode was ∼1600 mAh g-1. When the electrode was paired with 

sulfur and V2O5 cathodes, the energy densities of the full cells reached 490 Wh kg-1 and 510 

Wh kg-1, respectively. 

3DGAs are non-wieldable, however, which may become an engineering problem in 
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practical production. How to connect the host materials with a thin metallic current collector 

has hardly been reported, and it needs further exploration. 

4.5. GA-based composite electrodes for other batteries 

Selenium (Se) has a similar lithiation/de-lithiation mechanism and a comparable theoretical 

volumetric capacity to S. As in Li-S batteries, 3DGAs can also act as a support matrix to 

improve the electrochemical performance of Se cathodes. He et al. proposed a 3D graphene-

CNT@Se composite aerogel as cathode, which was prepared with CNT/Se sandwiched 

between graphene nanosheets.[154] The obtained composite cathode delivered improved 

capacity and enhanced rate capability compared to Se. 

Apart from the above battery systems, 3DGA-based composites can also be used in metal-

O2 batteries and metal-air batteries. For example, Zhou et al. reported Ru-particle modified 

graphene aerogels (Ru-GAs) that were directly used as a free-standing cathode for the Li-O2 

battery, which delivered a high capacity of 12000 mAh g-1 and excellent cycling 

performance.[155] Sun et al. reported an Ag nanowire-graphene aerogel composite for the Zn-

air battery that was synthesized by a facile method involving in-situ integration of silver 

nanowires during gelation of the GO sheets. The composite exhibited ultrahigh discharge 

rates of up to 300 mA cm-2.[156] In this composite, the hierarchical porous structure facilitated 

electrolyte infiltration and gas diffusion, and the 3D interconnected structures provided easy 

electron transfer paths; the high SSA offered abundant active sites for electrochemical 

reaction, and the large pore volume was able to accommodate the discharge products.  

5. 3DGAs and 3DGA-based composites for supercapacitors 

Electrochemical supercapacitors have attracted wide research interest due to their fast 

discharge-charge capacities.[157] The performance of supercapacitor electrodes is determined 

by their electrical conductivity, the transportation speed of electrolyte ions, and the nature of 

the active materials.[158] According to their different energy storage behaviours, 

supercapacitors can be classified into electrical double-layer capacitors (EDLCs) and 
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pseudocapacitors.[158,159] In recent years, different 3DGAs have been successfully used as 

electrode materials for EDLCs, owing to their high SSA, good electrical conductivity, and 

porous structure.[160-162] The 3D interconnected structure of graphene can be also utilized to 

develop binder-free electrodes. For example, Zhang et al. developed a mechanically strong 

and electrically conductive graphene aerogel for supercapacitors.[9] The material was 

fabricated by using supercritical CO2 to dry the hydrogel precursor, which was synthesized by 

reducing GO with L-ascorbic acid (Figure 12a). The obtained graphene had a high SSA of 

512 m2 g-1 and an advanced 3D porous structure (Figure 12b). It delivered typical EDLC 

rectangular cyclic voltammetry (CV) curves (Figure 12c), with specific capacitance of 128 F 

g-1 and excellent rate performance. Sui et al. synthesized an N-doped graphene aerogel (NGA) 

with high porosity via a hydrothermal method (Figure 12d and 12e).[163] The NGA had a high 

N doping concentration of 8.4 at.% and a high SSA of 814 m2 g-1. The doped N heteroatoms 

can help to further improve the supercapacitor performance of graphene aerogel electrode, 

because the doped heteroatoms are able to increase the wettability and electrical conductivity 

of the carbon framework. By benefiting from these advantages, NGA delivered enhanced 

capacitance of 223 F g-1 at 0.2 A g-1. In addition, it had excellent capacity retention, with only 

8% fading after 2000 cycles at 1 A g-1 (Figure 12f). 

In spite of these advantages of 3DGAs and doped 3DGAs, their porous structure may 

sacrifice the volumetric energy density of the electrode. Increasing the packing density is of 

great importance for the practical application of 3DGA electrodes. To date, different types of 

3D porous graphene electrodes with high volumetric density have been developed. For 

example, Xu et al. developed a 3D holey graphene framework (HGF) with a hierarchical 

porous structure as a high-energy-density supercapacitor electrode (Figure 12g).[164] The 

HGF had a large ion-accessible surface area and efficient transport pathways for electrons 

and ions. After compression, the packing density of the HGF film reached 0.71 g cm -3 

(Figure 12h). Although the compressed HGF had a dense structure, its SSA was as high as 
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810 m2 g-1. Due to its unique structure, the HGF film exhibited a gravimetric capacitance 

of 298 F g-1 and a volumetric capacitance of 212 F cm-3 in organic electrolyte (Figure 12i). 

More importantly, its energy density was comparable with those of lead acid batteries. 

Apart from directly acting as electrodes for supercapacitors, 3DGAs can be used in 

combination with active materials, including metal oxides, as well as in building hybrid 

structures for supercapacitors. These active materials, which normally serve as electrodes 

for pseudocapacitors, have high capacitances but low electrical conductivity and poor 

capacity retention. A 3DGA matrix can help to improve the conductivity of the active 

materials and provide rapid diffusion channels for the electrolyte ions. Therefore, the 

hybrid is able to deliver high electrochemical performance, including higher capacitance, 

better capacity retention, and better rate capability. For example, Wang et al. 

electrochemically deposited MnO2 nanoparticles on graphene and formed a 

MnO2/graphene aerogel composite (MnO2/GA) (Figure 13a).[165] The composite had a 

high MnO2 loading of 61 wt.% and exhibited a high capacitance of 410 F g -1 at 2 mVs-1, 

which was much higher than that of pure MnO2 (Figure 13b). The CV curves indicated 

that the energy storage mechanism of MnO2/GA was EDLC for the graphene aerogel and 

pseudocapacitance for the MnO2. The peak at ~ 0.5 V can be attributed to the surface 

reaction of MnO2 and electrolyte ions (Figure 13c). Qu et al. synthesized a 

graphene/hierarchical-graphene-coupled PANI aerogel (HGC-PANI), in which PANI 

uniformly grew on the surfaces of the graphene nanosheets.[166] This composite possessed 

both localized conductivity from the graphene sandwiched between the PANI nanosheets 

and long-distance conductivity from the graphene framework (Figure 13d). As a result, the 

MnO2/GA showed enhanced electrochemical performance, including higher capacitance 

and excellent capacity retention (90% after 3000 cycles at 100 mV s-1), based on its unique 

structure (Figure 13e). 
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The performance of different 3DGAs and 3DGA-based composites for supercapacitor 

application was summarized in Table 3. It could be concluded that 3DGAs have delivered 

high supercapacitor performance as self-supported electrodes due to their porous structure 

and high electrical conductivity. Their volumetric energy density is far from reaching a 

stratification commercially viable level, however, although the construction of 3DGA 

electrodes with high pack density may be important for solving this problem. Developing 

3DGA-based composite electrodes could improve the electrochemical performance of 

supercapacitors. It is worth noting that, in these 3DGA-based composite electrodes, both 

the 3DGAs and the active materials contribute to capacity. Structural modification of 

3DGAs, by heteroatom doping, for example, could further improve the performance of 

supercapacitors by increasing the wettability and conductivity of the carbon framework.  

6. Conclusions and prospects 

We have reviewed the recent advances on 3DGAs and their composites for energy storage 

applications. First, the synthesis principles and strategies of 3DGAs were summarized. 

Second, the recent progress on 3DGAs and 3DGA-based electrodes for different energy 

storage devices was reviewed, including LIBs/SIBs, Li-S batteries, lithium metal batteries, 

other batteries, and supercapacitors. In addition, current challenges were also summarized. 

3DGAs can be synthesized by CVD methods, 3D printing and GO direct growth processes, 

such as the gelation of GO in suspension, the template-assisted assembly method, and GO 

reduction-induced self-assembly of graphene. Due to their structural merits, 3DGAs can act as 

a binder-free electrode for energy storage systems and deliver high capacity and excellent rate 

capabilities. In addition, their porous nature and conductive frameworks make 3DGAs an 

ideal supporting matrix for various electrochemically active materials (such as metal 

oxides/sulfides/phosphides, Si, Sn, P, etc.), and can be used to construct composite electrodes 

for batteries and supercapacitors. In the composite electrodes, the 3DGA matrix could 

enhance the electrical conductivity of the active materials and alleviate their volume changes 
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during discharge/charge cycling, while the interconnected porous structure is able to provide 

rapid diffusion channels for electrolyte ions. Therefore, the 3DGA matrix can effectively 

improve the electrochemical performance of these active materials. In addition, 3DGAs can 

act as capsules or hosts for S and Li2S cathodes, and improve the performance of Li-S 

batteries by increasing the electrical conductivity of the cathode and alleviating the shuttle 

effects of polysulfides. Moreover, 3DGAs can be used as scaffolds for lithium metal batteries 

to effectively suppress the growth of Li dendrites. 

Although these are major achievements of 3DGAs in different energy storage fields, there 

are still some challenges that hinder their practical applications. The synthesis processes for 

3DGAs at the current stage are normally complicated and costly, and developing simple and 

low-cost synthesis strategies could widen the application of 3DGAs. In the case of battery 

anode applications, the 3DGAs suffer from low ICE. Electrolyte modification and 

optimization of the pore structure and specific surface area of 3DGAs are of importance for 

overcoming this problem. Although 3DGA matrices have effectively improved the 

electrochemical performance of electrochemically active materials, the loading masses were 

relatively low. Improving the loading content of active materials could have great importance. 

In addition, the adhesive strength of the active materials and 3DGAs need to be further 

improved to increase the overall structural stability of the composite electrode. Structural 

modification, such as by heteroatom doping, can also increase the electrical conductivity, 

enrich the content of electrochemically active sites, and improve the wettability of the carbon 

framework. Combinations of different modification strategies, such as heteroatom doping and 

polar materials loading, would have synergistic effects towards improving the electrochemical 

performance of 3DGAs. Importantly, increasing the packing density of 3DGA electrodes 

would help to further increase the volumetric energy density of energy storage devices. It 

should be pointed out that, the 3DGAs or 3DGA-based composites are relatively fragile, and 

their overall mechanical properties have rarely been systematically studied. To guarantee the 
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strength and flexibility of 3DGAs or 3DGA-based electrodes, their viscoelastic property 

should be high enough to tolerate further processing in large-scale electrode fabrication and 

battery assembly. Furthermore, the application of 3DGAs could be extended to other battery 

systems, such as aqueous Zn-ion batteries or aqueous Na-ion/K-ion batteries, considering 

their 3D porous conductive network and high active surface area. With continuous research 

efforts devoted to 3DGAs design and the optimization of electrochemical techniques, more 

and more advanced 3DGAs or 3DGA-based electrode materials for high-performance energy 

storage devices are expected to be achieved. 
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Figure 1. (a) Digital micrograph of a 3 cm×5 cm 3DGH substrate with a mass density of 0.82 

mg/cm2; (b) Low-magnification and (c) high-magnification scanning electron microscope 

(SEM) image of a 3DGH structure;[43] Reproduced with permission, Copyright 2015, 

American Chemical Society. (d-f) SEM images of graphene monolith at different 

magnifications: (d, e) typical top-view and (f) side-view;[44] Reproduced with permission, 

Copyright 2012, Springer Nature. (g) Synthesis process for 3DGAs via magnesiothermic 

reaction;[49] Reproduced with permission, Copyright 2015, Springer Nature. (h) Photographs 

of graphene aerogel prepared in different ammonium concentrations with the same mass and 

different volumes: a-GA-10%, a-GA-12%, a-GA-14%, a-GA-16%, a-GA-18%, a-GA-20%, 

and a-GA-22% (from left to right).[57] Reproduced with permission, Copyright 2014, Springer 

Nature. 
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Figure 2. (a) Synthsis process for a 3D-printed graphene aerogel microlattice; (b) Digital 

photograph and (c) SEM image of the 3D-printed graphene aerogel microlattice.[64] 

Reproduced with permission, Copyright 2015, Springer Nature. 
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Figure 3. (a) Discharge-charge curves of the first two cycles and corresponding CV curves 

(inset) of graphene as anode for LIBs;[73] Reproduced with permission, Copyright 2009, 

Elsevier. (b) Discharge-charge curves of the first three cycle of graphene as anode for SIBs.[74] 

Reproduced with permission, Copyright 2016, Elsevier. 
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Figure 4. (a) Photograph and (b) SEM image of the 3D graphene foam, (c) Discharge-charge 

curves at different current densities of 3D graphene as anode for LIBs;[75] Reproduced with 

permission, Copyright 2015, John Wiley and Sons. (d) Schematic illustration of the synthesis 

approach and the application of 3D rGO aerogel, (e) Cycling performance and corresponding 

Coulombic efficiency of the 3D rGO aerogel.[76] Reproduced with permission, Copyright 

2017, Springer Nature. 
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Figure 5. (a) Schematic illustration of HPGM as anode for SIBs, (b) Transmission electron 

microscope (TEM) image of HPGM, (c) Cycling performance and corresponding discharge-

charge curves of HPGM;[77] Reproduced with permission, Copyright 2015, Elsevier. (d) 

Photograph of the graphene aerogel prepared from graphene hydrogel, (e) Photograph of the 

pressed SGF electrode, (f) SEM image of the pressed SGF electrode, (g) Discharge-charge 

curves, (h) rate capabilities, and (i) long cycling test at high discharge rate of the SGF.[78] 

Reproduced with permission, Copyright 2015, John Wiley and Sons. 
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Figure 6. (a) Schematic illustration of the synthesis of V2O5@graphene aerogel, and 

corresponding photographs, (b) SEM image of V2O5@graphene aerogel and its cycling 

performance (inset);[91] Reproduced with permission, Copyright 2018, Elsevier. (c) 

Fabrication process and photograph of Fe3O4@GS/GF.[93] Reproduced with permission, 

Copyright 2018, Elsevier. 
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Figure 7. Photograph of the C@P/GA, and schematic illustration of its structural advantages, 

as well as its Na+ storage performance.[103] Reproduced with permission, Copyright 2016, 

John Wiley and Sons. 
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Figure 8. (a) SEM image with photograph (inset) and (b) TEM image of SnO2-graphene dual 

aerogel, and (c) its cycling performance as anode for SIBs;[109] Reproduced with permission, 

Copyright 2015, Elsevier. (d) SEM image with photograph (inset) and (e) TEM image of 

graphene/MoS2 aerogel, and (f) its cycling performance as anode for SIBs;[113] Reproduced 

with permission, Copyright 2018, American Chemical Society. (g) SEM image of graphene-

WS2 composite;[114] Reproduced with permission, Copyright 2016, John Wiley and Sons. (h) 

TEM image of 3D graphene-Sb2S5 aerogel;[111] Reproduced with permission, Copyright 2016, 

American Chemical Society. (i) SEM image of graphene-Bi2S3 aerogel.[115] Reproduced with 

permission, Copyright 2017, Royal Society of Chemistry. 
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Figure 9. (a) Digital photograph of the doped graphene sponge; (b) Preparation of lithium 

polysulfide-graphene sponge composite cathode and its working principles.[123] Copyright 

2015, Springer Nature. (c) Synthetic procedure for the 3D CNT/graphene-Li2S composite, (d) 

SEM image of 3D CNT/graphene-Li2S composite; (e) Low-magnification TEM image of 3D 

CNT/graphene-Li2S, (f) TEM image of Li2S nanoparticles on 3D CNT/graphene-S and high-

resolution TEM image of Li2S nanocrystals (inset).[131] Reproduced with permission, 

Copyright 2016, American Chemical Society. 
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Figure 10. (a) Schematic illustration of the structure of a Li-S battery with an HCA interlayer 

and its inhibitory effect on the diffusion of polysulfides;[132] Reproduced with permission, 

Copyright 2016, Elsevier. (b) Photographs of the rGO, B-doped graphene, and N-doped 

graphene hydrogels after the hydrothermal reaction (the unit is centimeters for the upper 

scale); (c) Slices of the B-doped graphene hydrogel, (d) Schematic illustration of the Li2S 

coating process and the in-situ charge/ discharge process of the graphene-based electrode.[144] 

Reproduced with permission, Copyright 2016, John Wiley and Sons. 
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Figure 11. (a) Photograph of the 3DGA for lithium metal anode; (b) SEM image of the 3DGA; 

(c) SEM image showing the open end of a microtube.in 3DGA;[151] Reproduced with 

permission, Copyright 2017, John Wiley and Sons. (d) Schematic illustration of synthetic 

procedures, from a GO film (left) to a sparked rGO film (middle), to a layered Li-rGO 

composite film (right),[152] Reproduced with permission, Copyright 2016, Springer Nature. (e) 

Schematic illustration of the unique foil structure, comprising densely packed reactive LixSi 

nanoparticles encapsulated by large graphene sheets.[153] Reproduced with permission, 

Copyright 2017, Springer Nature. 
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Figure 12. (a) Photograph and (b) SEM image of 3DGA for EDLCs, and (c) its CV curves;[9] 

Reproduced with permission, Copyright 2011, Royal Society of Chemistry. (d) Low 

magnification SEM image and photograph (inset), and (e) high-magnification SEM image of 

NGA; (f) Capacity retention of NGA electrode for EDLCs;[163] Reproduced with permission, 

Copyright 2015, American Chemical Society. (g) Photograph of HGF and pressed HGF film, 

(h) SEM image of pressed film, (i) Rate performance of HGF electrode.[164] Reproduced with 

permission, Copyright 2014, Springer Nature. 
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Figure 13. (a) SEM image of MnO2/GA composite, (b) CV curves and enlarged CV curves 

(inset) of MnO2/GA as electrode for supercapacitors, (c) Cycling performance of MnO2/GA 

composite in comparison with MnO2;
[165] Reproduced with permission, Copyright 2013, John 

Wiley and Sons. (d) Schematic illustration of 3D graphene/PANI composite electrode, (e) 

Capacity retention of graphene/PANI electrode.[166] Reproduced with permission, Copyright 

2018, Elsevier. 
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Table 1. Performance comparison of different 3DGAs and 3DGA-based composites for LIB/SIB 

applications. 

Application Materials 

Current 

density 

(mA g-1) 

Cycle 

number 
Capacity 

Voltage 

Range (V) 

ICE 

(%) 
Ref. 

LIBs 

3D graphene 

foam 
2000 600 342 mAh g-1 3-0.01 61.3 75 

SGFs 5000 500 404.5 mAh g-1 3-0.01 48.5 78 

3DG@Fe3O2 200 130 1135 mAh g-1 3-0.01 62.8 89 

MGAP 100 700 
101.1 % 

retention 
3-0.01 95.4 90 

V2O5@3DNG 100 100 235 mAh g-1 4-2 ~ 99 91 

Fe3O4@GS/GF 93 150 1059 mAh g-1 3-0.01 ~ 70 93 

Co3O4@NGN 1000 400 676 mAh g-1 3-0.01 52.3 12 

C-MoS2/N-G 200 500 900 mAh g-1 3-0.01 70 98 

SIBs 

N-doped 3D 

rGO aerogel 
100 200 287.9 mAh g-1 3-0.01 ~ 28 76 

HPGM 500 1600 ~ 82 mAh cm-2 4-1.5 N/A 77 

C@P/GA 2600 200 1096 mAh g-1 2-0.01 70.5 103 

SnO2-graphene 

dual aerogel 
200 200 221 mAh g-1 2.5-0.01 28.7 109 

Graphene/MoS2 

aerogel 
100 100 1145 mAh g-1 3-0.01 73 113 

Grapene-CNT-

WS2 aerogel 
200 100 253 mAh g-1 3-0.01 33.9 114 

Graphene-Sb2S5 

aerogel 
100 100 828 mAh g-1 3-0.01 73.6 111 

Bi2S3-graphene 

aerogels 
100 120 348 mAh g-1 3-0.01 N/A 115 

Table 2. Performance comparison of different 3DGAs and 3DGA-based composites for Li-S battery 

application. 

Materials Current density 
Cycle 

number 
Capacity 

Voltage 

Range (V) 

Cathode 

loading 
Ref. 

3D graphene 

sponge 
0.5 C 200 670 mAh g-1 2.8-1.5 4.6 mg cm-2 123 

S-r-GO 0.1 C 75 3 mAh cm-2 2.8-1.7 67 wt% 124 

3DCG-Li2S 0.2 C 300 958.3 mAh g-1 3-1.5 81.4 wt% 131 

HCA-S 4 C 600 
78% capacity 

retention 
3-1.7 N/A 132 

Py-GF@S 0.5 C 100 798 mAh g-1 3-1.5 6.2 mg cm-2 137 

GA/TiO2/S 1 C 250 512 mAh g-1 2.8-1.7 
1.1-1.3 mg 

cm-2 
138 

ZnO/G-S 0.2 C 100 752 mAh g-1 2.8-1.5 
1-1.2 mg 

cm-2 
139 

MgO/G-S 0.2 C 100 767 mAh g-1 2.8-1.5 
1-1.2 mg 

cm-2 
139 

Li2S@Li3PS4/GA 0.1 C 100 485.5 mAh g-1 2.8-1.5 1.2 mg cm-2 140 

Li2S/B-doped 

graphene 
0.5 C 300 403 mAh g-1 2.8-1.7 

1.8-2.3 mg 

cm-2 
144 

Li2S/N-doped 

graphene 
0..5 C 300 357 mAh g-1 2.8-17 

1.8-2.3 mg 

cm-2 
144 
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Table 3. Performance comparison of different 3DGAs and 3DGA-based composites for supercapacitor 

application. 

Materials 
Current 

density 
Capacitance 

Cycle 

number 
Retention 

Voltage 

Range (V) 
Electrolyte Ref. 

Supercritical 

CO2 dried 

GA 

50 mA g-1 128 F g-1 N/A N/A 1-0 

6M potassium 

hydroxide 

(KOH) 

9 

NGA 0.2 A g-1 223 F g-1 2000 92 % (1 A g-1) 1-0 1M H2SO4 163 

HGF 1 A g-1 
298 F g-1 

212 F cm-3 
10000 91 % (20 A g-1) 3.5-0 EMIMBF4/AN 164 

MnO2/GA 1 V s-1 264 F g-1 50000 84 % (1 V s-1) 0.9-0 0.5 M Na2SO4 165 

HGC-PANI 5 mV s-1 453 mF cm-2 3000 90 % (0.1 V s-1) 1-0 
PVA-H2SO4 

(solid state) 
166 

3D-GCA 0.4 A g-1 4.76 F g-1 10000 
95.5 % (200 mV 

s-1) 
0.8-0 3M KOH 65 

V3S4/3DGH 10 mV s-1 225 F g-1 5000 98.3 (100 mV s-1) 0.8-0 5 M LiCl 51 
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In this paper, we review recent advances in synthesizing 3D graphene architectures and their 

composites, as well as their application in different energy storage devices, including various 

battery systems and supercapacitors. In addition, their challenges for application at the current 

stage are discussed, and future development prospects are indicated. 
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