55 research outputs found

    Global analysis of the eukaryotic pathways and networks regulated by Salmonella typhimurium in mouse intestinal infection in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute enteritis caused by <it>Salmonella </it>is a public health concern. <it>Salmonella </it>infection is also known to increase the risk of inflammatory bowel diseases and cancer. Therefore, it is important to understand how <it>Salmonella </it>works in targeting eukaryotic pathways in intestinal infection. However, the global physiological function of <it>Salmonella </it>typhimurium in intestinal mucosa <it>in vivo </it>is unclear. In this study, a whole genome approach combined with bioinformatics assays was used to investigate the <it>in vivo </it>genetic responses of the mouse colon to <it>Salmonella</it>. We focused on the intestinal responses in the early stage (8 hours) and late stage (4 days) after <it>Salmonella </it>infection.</p> <p>Results</p> <p>Of the 28,000 genes represented on the array, our analysis of mRNA expression in mouse colon mucosa showed that a total of 856 genes were expressed differentially at 8 hours post-infection. At 4 days post-infection, a total of 7558 genes were expressed differentially. 23 differentially expressed genes from the microarray data was further examined by real-time PCR. Ingenuity Pathways Analysis identified that the most significant pathway associated with the differentially expressed genes in 8 hours post-infection is oxidative phosphorylation, which targets the mitochondria. At the late stage of infection, a series of pathways associated with immune and inflammatory response, proliferation, and apoptosis were identified, whereas the oxidative phosphorylation was shut off. Histology analysis confirmed the biological role of <it>Salmonella</it>, which induced a physiological state of inflammation and proliferation in the colon mucosa through the regulation of multiple signaling pathways. Most of the metabolism-related pathways were targeted by down-regulated genes, and a general repression process of metabolic pathways was observed. Network analysis supported IFN-γ and TNF-α function as mediators of the immune/inflammatory response for host defense against pathogen.</p> <p>Conclusion</p> <p>Our study provides novel genome-wide transcriptional profiling data on the mouse colon mucosa's response to the <it>Salmonella typhimurium </it>infection. Building the pathways and networks of interactions between these genes help us to understand the complex interplay in the mice colon during <it>Salmonella </it>infection, and further provide new insights into the molecular cascade, which is mobilized to combat <it>Salmonella</it>-associated colon infection <it>in vivo</it>.</p

    Systematic Analysis of Impact of Sampling Regions and Storage Methods on Fecal Gut Microbiome and Metabolome Profiles.

    Get PDF
    The contribution of human gastrointestinal (GI) microbiota and metabolites to host health has recently become much clearer. However, many confounding factors can influence the accuracy of gut microbiome and metabolome studies, resulting in inconsistencies in published results. In this study, we systematically investigated the effects of fecal sampling regions and storage and retrieval conditions on gut microbiome and metabolite profiles from three healthy children. Our analysis indicated that compared to homogenized and snap-frozen samples (standard control [SC]), different sampling regions did not affect microbial community alpha diversity, while a total of 22 of 176 identified metabolites varied significantly across different sampling regions. In contrast, storage conditions significantly influenced the microbiome and metabolome. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles. Sample storage in RNALater showed a significant level of variation in both microbiome and metabolome profiles, independent of the storage or retrieval conditions. The effect of RNALater on the metabolome was stronger than the effect on the microbiome, and individual variability between study participants outweighed the effect of RNALater on the microbiome. We conclude that homogenizing stool samples was critical for metabolomic analysis but not necessary for microbiome analysis. Short-term room temperature storage had a minimal effect on the microbiome and metabolome profiles and is recommended for short-term fecal sample storage. In addition, our study indicates that the use of RNALater as a storage medium of stool samples for microbial and metabolomic analyses is not recommended.IMPORTANCE The gastrointestinal microbiome and metabolome can provide a new angle to understand the development of health and disease. Stool samples are most frequently used for large-scale cohort studies. Standardized procedures for stool sample handling and storage can be a determining factor for performing microbiome or metabolome studies. In this study, we focused on the effects of stool sampling regions and stool sample storage conditions on variations in the gut microbiome composition and metabolome profile

    Chronic Effects of a Salmonella Type III Secretion Effector Protein AvrA In Vivo

    Get PDF
    Salmonella infection is a common public health problem that can become chronic and increase the risk of inflammatory bowel diseases and cancer. AvrA is a Salmonella bacterial type III secretion effector protein. Increasing evidence demonstrates that AvrA is a multi-functional enzyme with critical roles in inhibiting inflammation, regulating apoptosis, and enhancing proliferation. However, the chronic effects of Salmonella and effector AvrA in vivo are still unknown. Moreover, alive, mutated, non-invasive Salmonella is used as a vector to specifically target cancer cells. However, studies are lacking on chronic infection with non-pathogenic or mutated Salmonella in the host.We infected mice with Salmonella Typhimurium for 27 weeks and investigated the physiological effects as well as the role of AvrA in intestinal inflammation. We found altered body weight, intestinal pathology, and bacterial translocation in spleen, liver, and gallbladder in chronically Salmonella-infected mice. Moreover, AvrA suppressed intestinal inflammation and inhibited the secretion of cytokines IL-12, IFN-gamma, and TNF-alpha. AvrA expression in Salmonella enhanced its invasion ability. Liver abscess and Salmonella translocation in the gallbladder were observed and may be associated with AvrA expression in Salmonella.We created a mouse model with persistent Salmonella infection in vivo. Our study further emphasizes the importance of the Salmonella effector protein AvrA in intestinal inflammation, bacterial translocation, and chronic infection in vivo

    Wnt2 inhibits enteric bacterial-induced inflammation in intestinal epithelial cells:

    Get PDF
    Wnt signaling plays an essential role in gastrointestinal epithelial proliferation. Most investigations have focused on developmental and immune responses. Bacterial infection can be chronic and increases the risk of inflammatory bowel disease and colitis-associated cancer. However, we lack studies on how bacteria regulate Wnt proteins and how Wnts modulate the host responses to enteric bacteria. This study investigated the effects of Salmonella and E. coli on Wnt2, one of the Wnt family members, in intestinal epithelia cells

    The Histone Demethylase KDM5 Activates Gene Expression by Recognizing Chromatin Context through Its PHD Reader Motif

    Get PDF
    KDM5 family proteins are critically important transcriptional regulators whose physiological functions in the context of a whole animal remain largely unknown. Using genome-wide gene expression and binding analyses in Drosophila adults, we demonstrate that KDM5 (Lid) is a direct regulator of genes required for mitochondrial structure and function. Significantly, this occurs independently of KDM5’s well-described JmjC domain-encoded histone demethylase activity. Instead, it requires the PHD motif of KDM5 that binds to histone H3 that is di- or trimethylated on lysine 4 (H3K4me2/3). Genome-wide, KDM5 binding overlaps with the active chromatin mark H3K4me3, and a fly strain specifically lacking H3K4me2/3 binding shows defective KDM5 promoter recruitment and gene activation. KDM5 therefore plays a central role in regulating mitochondrial function by utilizing its ability to recognize specific chromatin contexts. Importantly, KDM5-mediated regulation of mitochondrial activity is likely to be key in human diseases caused by dysfunction of this family of proteins

    Simple Analysis on the Cause of the Development of Furniture Designer’s Brand Industry -- Take MORELESS and OPAL for Example

    No full text
    This article analyzes the characteristics of different types of furniture brands based on ordinary brands and designer brands. We also investigates and studies the causes of the development and growth of designer brands, and further combines the successful cases of domestic excellent furniture designer brands to summarize the specific reasons for the formation of the brand of furniture designers, design principles and methods. This paper discusses the development direction, design principles and methods of furniture designer brand, and provides references for the comprehensive exploration of furniture designer's brand development
    • …
    corecore